Answer:
I think copper
Explanation:
Material IACS % Conductivity
Silver 105
Copper 100
Gold 70
Aluminum 61
Nickel 22
Zinc 27
Brass 28
Iron 17
Tin 15
Phosphor Bronze 15
Lead 7
Nickel Aluminum Bronze 7
Steel 3 to 15
the table might help- your indian brother
<span>Answer: 17.8 cm
</span>
<span>Explanation:
</span>
<span>1) Since temperature is constant, you use Boyle's law:
</span>
<span>PV = constant => P₁V₁ = P₂V₂
</span><span>=> V₁/V₂ = P₂/P₁</span>
<span>
2) Since the ballon is spherical:
</span><span>V = (4/3)π(r)³</span>
<span>
Therefore, V₁/V₂ = (r₁)³ / (r₂)³
</span>
<span>3) Replacing in the equation V₁/V₂ = P₂/P₁:
</span><span><span>(r₁)³ / (r₂)³ </span>= P₂/P₁</span>
<span>
And you can solve for r₂: (r₂)³ = (P₁/P₂) x (r₁)³
</span>(r₂)³ = (1.0 atm / 0.87 atm) x (17 cm)³ = 5,647.13 cm³
<span>
r₂ = 17.8 cm</span>
Answer:
answer is option a..............
Answer:
The pH of the buffer solution = 8.05
Explanation:
Using the Henderson - Hasselbalch equation;
pH = pKa₂ + log ( [HPO₄²-]/[H₂PO4⁻]
where pKa₂ = -log (Ka₂) = -log ( 6.1 * 10⁻⁸) = 7.21
Concentration of OH⁻ added = 0.069 M (i.e. 0.069 mol/L)
[H₂PO4⁻] after addition of OH⁻ = 0.165 - 0.069 = 0.096 M
[HPO₄²-] after addition of OH⁻ = 0.594 + 0.069 = 0.663 M
Therefore,
pH = 7.21 + log (0.663 / 0.096)
pH = 7.21 + 0.84
pH = 8.05