C. Temperature, chemical composition and mineral structure
Explanation:
The Bowen's reaction series illustrates the relationship between temperature, chemical composition and mineral structure.
The series is made up of a continuous and discontinuous end through which magmatic composition can be understood as temperature changes.
- The left part is the discontinuous end while the right side is the continuous series.
- From the series, we understand that a magmatic body becomes felsic as it begins to cool to lower temperature.
- A magma at high temperature is ultramafic and very rich in ferro-magnesian silicates which are the chief mineral composition of olivine and pyroxene. These minerals are predominantly found in mafic- ultramafic rocks. Also, we expect to find the calcic-plagioclase at high temperatures partitioned in the magma.
- At a relatively low temperature, minerals with frame work structures begins to form . The magma is more enriched with felsic minerals and late stage crystallization occurs here.
Learn more:
Silicate minerals brainly.com/question/4772323
#learnwithBrainly
Answer:
Impedance = 93.75 ohms
Current = 1.81 A
Explanation:
Resistance = R = 80 ohms
Inductance = L = 0.2 H
Inductive reactance = XL =
= ωL = (2πf) L
= 2 (3.14) (60)(0.2) = 75.398 Ohms
Capacitive reactance = 1 / ωC = 1/(2πf)C = 1 / [(2π)(60)(0.1 × 10⁻3)]
= 26.526 Ohms
Impedance = Z =
=
= 93.747 ohms
Voltage =
× 120 = 169.7056 V
Current = I = V ÷ R = (169.7056) ÷ 93,747 = 1.81 A
Answer:
True
Explanation:
Standard heat of formation is the heat change that deals with the formation of 1mole at standard rates and states of the given reactants . Standard heat of formation is the difference between the enthalpy change of reactants and products.
Answer:
F = GMmx/[√(a² + x²)]³
Explanation:
The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is
dF = GmdM/L²
Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.
So, the horizontal components add from two symmetrically opposite mass elements dM,
Thus, the horizontal component of the force is
dF' = dFcosФ where Ф is the angle between L and the x axis
dF' = GmdMcosФ/L²
L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.
L = √(a² + x²)
cosФ = x/L
dF' = GmdMcosФ/L²
dF' = GmdMx/L³
dF' = GmdMx/[√(a² + x²)]³
Integrating both sides we have
∫dF' = ∫GmdMx/[√(a² + x²)]³
∫dF' = Gm∫dMx/[√(a² + x²)]³ ∫dM = M
F = GmMx/[√(a² + x²)]³
F = GMmx/[√(a² + x²)]³
So, the force due to the sphere of mass m is
F = GMmx/[√(a² + x²)]³
Answer:
The center of mass for the object is
from the origin
Explanation:
From the question we are told that
The mass of the first object is 
The position of first object with respect to origin 
The mass of the second object is 
The position of second object with respect to origin 
The mass of the third object is 
The position of third object with respect to origin 
The mass of the fourth object is 
The position of fourth object with respect to origin 
Generally the center of mass of the object along the x-axis is zero because all the mass lie on the y axis
Generally the location of the center mass of the object is mathematically represented as

=>
=>