Answer:
Time, t = 80 seconds
Explanation:
Given that,
The frequency of the oscillating mass, f = 1.25 Hz
Number of oscillations, n = 100
We need to find the time in which it makes 100 oscillations. We know that the frequency of an object is number of oscillations per unit time. It is given by :



t = 80 seconds
So, it will make 100 oscillations in 80 seconds. Hence, this is the required solution.
I'm actually going ahead in the book (DC Circuits) so this isn't really homework but I figured the tag was appropriate....the name of the chapter is Ohm's Law and Watt's Law.
<span>Problem: Calculate the power dissipated in the load resistor, R, for each of the circuits.Circuit (a): V = 10V; I = 100mA; R = ?; Since I know
V and
I use formula
P = IV: P = IV = (100mA)(10V) = 1 W.</span>
The next question is what I'm not sure about:
Question: What is the power in the circuit (a) above if the voltage is doubled? (Hint: Consider the effect on current).
What I did initially was: P = IV = (100mA)(2V) = 2 W
But then I looked at the answer and it said 4 W, then I looked at the Hint again. Then I remembered in the book early on it said "If the voltage increases across a resistor, current will increase."
So question is: When solving problems I have to increase (or decrease) current (I) every time voltage (V) is increased (decreased) in a problem, right? How about the other way around, when increasing current (I), you need to increase voltage (V). I'm pretty sure that's how they got 4 W, but want to make sure before I head to the next section of the book.
P = IV = (200mA)(2V) = 4 W
Answer:
1,323 days left
Explanation:
147 x 10 = 1,470
1470 - 147 = 1,323
Hopefully this helps you :)
pls mark brainlest ;)
Each stream in a drainage system drains into a certain area. In a drainage basin the water falling in the basin drain will fall into the same stream. A drainage divides drawing basin from other drainage basins
Answer:
W = - 118.24 J (negative sign shows that work is done on piston)
Explanation:
First, we find the change in internal energy of the diatomic gas by using the following formula:

where,
ΔU = Change in internal energy of gas = ?
n = no. of moles of gas = 0.0884 mole
Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)
Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K
ΔT = Rise in Temperature = 18.8 K
Therefore,

Now, we can apply First Law of Thermodynamics as follows:

where,
ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)
W = Work done = ?
Therefore,

<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>