Answer:
D)
Explanation:
This seems like a weird question
Water is held together by covalent bonds. The amount of energy required to break these bonds so that water would split into it's respective ions is pretty high. The chances that any one of the molecules floating in 1L of water get enough energy to spontaneously burst into it's ions is slim to none.
So, D) seems like the most likely answer
Answer:
what? that's 66 total, 6 more elliptical machines, a 1 to 1.2 ratio
but I don't know what else you would mean
Answer:
substance
Explanation:
A mixture is when two or more <u>different</u> atoms/molecules are together, but not joined.
A substance is when the <u>same </u>atom/molecule is in a group together.
In this example, it is a substance because it is comprised of the same molecule not joined all together. If you wanted a mixture, other colored atoms/molecule (e.g. add green atoms) would change it to this property.
Answer:
The correct answer is a scientific law.
Explanation:
The laws of science or scientific laws refer to the statements, which predict or illustrate an array of natural processes. It is a statement based on observations or spontaneous experiments, which illustrate some characteristics of the natural world.
The term law exhibits different uses in various circumstances, that is, across all the branches of natural science. The laws are formulated through data and can be further created via mathematics, in all the conditions, they are indirectly or directly based on empirical evidence. The scientific laws recapitulate the outcomes of observations or experiments, generally within some point of application.
Answer:
(a) boiling point
(d) density at a given temperature and pressure.
Explanation:
Isomers are compounds that have the same molecular formula but different structural formulas. They differ in chemical and physical properties depending on the type of isomerism displayed by the compounds.
The compounds stated here are structural or constitutional isomers hence they possess different boiling points and densities at a given temperature and pressure owing to structural differences in the molecules.
Since they have the same molecular formula, they must yield the same result during combustion analysis and they must have the same molecular weight.