Yes, if the mass starts at rest, <u>the change in speed will be equal the final speed</u>, because:
Δv = Vf - Vo
How Vo (Initial velocity) is equal zero, we simplificate:
Δv = Vf
Then, the change of the speed, if the mass starts at rest, will be equal to final velocity.
Greetings.
I think i used calulater and it gives me 47.5
Achieve a full outer shell
You have to use the specific heat equation.
Q = cmΔT where Q is the energy, c is specific heat, m is mass, and ΔT is change in temp.
So we can substitute our variables into the equation.
30000J = (390g)(3.9J*g/C)ΔT
Solving for ΔT, we get:
30000J/[(390g)*(3.9J*g/C) = ΔT
ΔT = 19.72386588C
I'm assuming the temperature is C, since it was not specified.
Hope this helps!
The period of the pendulum is the reciprocal of the frequency:
The period of the pendulum is given by
where L is the length of the pendulum, and g the acceleration of gravity. By re-arranging the formula and using the value of T we found before, we can calculate the length of the pendulum L: