Answer:
B. twice as much kinetic energy
Explanation:
Lets take the mass of the first marble =2 m
the mass of the second marble = m
We know that velocity of particle does not depends on their mass that is the velocity of both mass will be same after dropping from the roof.
We know that kinetic energy of a mass is given as

Kinetic energy for heavier mass

Kinetic energy for light mass

KE=2 KE '
Form above two equation we can say that ,the kinetic energy for the heavier mass is twice the lighter mass.
Therefore the answer will be B.
Energy Conservation Theory,




<h3>What is law of energy conservation?</h3>
The principle of energy conservation states that energy is neither created nor destroyed. It may change from one sort to another. Just like the mass conservation rule, the legitimacy of the preservation of energy depends on experimental perceptions; hence, it is an experimental law. The law of preservation of energy, too known as the primary law of thermodynamics
To learn more about Energy Conservation Theory, visit;
brainly.com/question/8004680
#SPJ4
Look at the first person’s answer. Cause I know I’m wrong
Answer:
3.28 cm
Explanation:
To solve this problem, you need to know that a magnetic field B perpendicular to the movement of a proton that moves at a velocity v will cause a Force F experimented by the particle that is orthogonal to both the velocity and the magnetic Field. When a particle experiments a Force orthogonal to its velocity, the path it will follow will be circular. The radius of said circle can be calculated using the expression:
r = 
Where m is the mass of the particle, v is its velocity, q is its charge and B is the magnitude of the magnetic field.
The mass and charge of a proton are:
m = 1.67 * 10^-27 kg
q = 1.6 * 10^-19 C
So, we get that the radius r will be:
r =
= 0.0328 m, or 3.28 cm.
The work-energy theorem states that the change in kinetic energy of the particle is equal to the work done on the particle:

The work done on the particle is the integral of the force on dx:

So, this corresponds to the change in kinetic energy of the particle.