A wave carries <u>energy</u><u> </u>from one place to another.
mechanical waves carry energy through <u>MEDIUM</u><u>.</u>
<u>SO</u><u> </u><u>THIS</u><u> </u><u>IS</u><u> </u><u>MY</u><u> </u><u>ANSWER</u>
Answer:
The spring constant is 3750 N/m
Explanation:
Use the following two relationships:
(Work) = (Force) x (Displacement)
(Force) = (Spring constant) x (Displacement)
=>
(Spring constant) = (Force) / (Displacement) = (Work) / (Displacement)^2
(Spring constant) = 6.0 kg.(m^2/s^2) / 0.0016 m^2 = 3750 N/m
The spring constant is 3750 N/m
Because mass does not change from place to place but weight does change from place to place... why? because weight is the amount of gravitational force on an object and mass is the amount of matter in an object. mars has less gravitational force so an object will weigh less than it really weighs there
Answer:
distance between object and image = 18.9 cm
Explanation:
given data
radius of curvature = 18 cm
focal length = 1/2 radius of curvature
magnification = 40%
to find out
distance between object and image
solution
we know lens formula that is
1/f = 1/v + 1/u ....................1
here f = 18 /2 and v and u is object and image distance
and we know m = 40% = 0.40
so 0.40 = -v / u
so here v = - 0.40 u
so from equation 1
1/f = 1/v + 1/u
2/18 = - 1/0.40u + 1/u
u = -13.5 cm ..................2
and
v = -0.40 (- 13.5)
v = 5.4 cm ......................3
so from equation 2 and 3
distance between object and image = 5.4 + 13.5
distance between object and image = 18.9 cm