Answer:
a= (-g) from the moment the ball is thrown, until it stops in the air.
a = (0) when the ball stops in the air.
a = (g) since the ball starts to fall.
Explanation:
The acceleration is <em>(-g)</em> <em>from the moment the ball is thrown, until it stops in the air</em> because the movement goes in the opposite direction to the force of gravity. In the instant <em>when the ball stops in the air the acceleration is </em><em>(0)</em> because it temporarily stops moving. Then, <em>since the ball starts to fall, the acceleration is </em><em>(g)</em><em> </em>because the movement goes in the same direction of the force of gravity
Terminal speed is the maximum speed that a falling object can reach and is based on aerodynamic resistance. In a vacuum, an object falling toward a planet as a result of gravity will continue to accelerate until it hits the ground.
However, if the object is falling through an atmosphere, such as on earth, then it will accelerate up to the point that the aerodynamic resistance cancels the downward force due to gravity, and it travels at a constant maximum speed, called the terminal velocity. At this point, resistance is equal to acceleration due to gravity. At terminal velocity, the skydiver's acceleration is zero.
Answer:
b.
because hsuehwbwnowbwbww9whw
This would be B, 5cm/sec.
To get this answer you would need to divided 25 which is how large the ramp is, and 5 seconds, the amount of time it took to travel down the ramp.
A mechanical wave<span> requires an initial </span>energy<span> input. Once this initial </span>energy<span> is added, the </span>wave<span> travels through the medium until all its </span>energy is transferred<span>. In contrast, electromagnetic </span>waves<span> require no medium, but can still travel through one</span>