Answer:
680 J
Explanation:
Mechanical energy = potential energy + kinetic energy
ME = PE + KE
ME = mgh + ½ mv²
ME = (77.1 kg) (9.8 m/s²) (0.90 m) + ½ (77.1 kg) (0 m/s)²
ME = 680 J
 
        
                    
             
        
        
        
Energy to lift something = 
               (mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm  =  5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
            =  2,696,925 joules .
That's quite a large amount of energy ... equivalent to 
straining at the rate of 1 horsepower for almost exactly an 
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.
        
             
        
        
        
Great Question! I happened to be a physics nerd!
Answer:
C. Two hydrogen nuclei, each with only one proton, fuse to form deuterium, a form of hydrogen with one proton. 
MAKE SURE TO SEE EXPLANATION!
Explanation:
In the core of the Sun, or any other main sequence star, there is no single fusion process. Instead, complex sequences of processes occur to make helium nuclei from hydrogen nuclei (i.e. protons). The proton-proton chain provides for the majority of energy generation in stars with masses less than that of the Sun.  One difficulty in creating a helium nucleus (two protons and two neutrons) is that there are only protons to begin with. Some protons must be turned into neutrons in some way. The first step is to combine two protons to form a deuterium nucleus (also known as a deuteron). That's a hefty hydrogen nucleus with one proton and one neutron. Such a proton-proton contact is highly unlikely, and it has never been detected in a laboratory. Fortunately, the Sun's core is incredibly hot and dense, with an incredible number of protons packed inside. Even a low likelihood event will occur every now and again. Along with each deuteron, a positron (an "anti-electron") and a neutrino are created. Because the Sun's core is plasma, there are a lot of free electrons, thus the positron doesn't live long until it and an electron collide and annihilate, resulting in gamma radiation. The deuteron then interacts with a proton to form a helium 3 nucleus. That is a high-probability interaction, and it occurs swiftly. Two helium 3 nuclei join in the third phase to generate a helium 4 ("regular" helium) nucleus and a proton. Branch I of the proton-proton (p-p) chain is responsible for this. Another stage is required because reactions between helium 3 and helium 4 nuclei are possible. There are two conceivable reactions (named Branch II and Branch III), and I'll save you the gory details. It gets much more complicated since theoretical calculations indicate that a reaction between a helium 3 nucleus and a proton is feasible — Branch IV. This reaction has an incredibly low likelihood of occurring, far lower than the Branch I reaction, thus it must be exceedingly rare. The Carbon-Nitrogen-Oxygen (CNO) Cycle is another method for reducing hydrogen to helium. It does not generate much energy in the Sun, but it is the principal energy generation mechanism in larger stars. 
 
        
             
        
        
        
Answer: The tidal forces exerted by the moon are directly associated with the earth's rotation. Due to the strong gravitational pull of the moon, the tidal bulging appears on both the sides on earth and these are region of high tide, and there is gradual rise and fall of sea level.
Because of these tidal effect, the earth is able to rotate only once in each of the orbital period.
 
        
             
        
        
        
Answer:
the electric field strength of this charge is two times the strength of the other charge
Explanation:
Using the relationship between electric field and the charge, which is inversely proportionality. Let the the magnitude of the first charge be Q and the respective electric field be E. It implies that;
E1/E2 = Q2/Q1
E2 = E1 x Q1/Q2
       = E x Q/ (Q/2)
        = 2E