Answer:
The volume of the ball with the drilled hole is:

Step-by-step explanation:
See attached a sketch of the region that is revolved about the y-axis to produce the upper half of the ball. Notice the function y is the equation of a circle centered at the origin with radius 15:

Then we set the integral for the volume by using shell method:

That can be solved by substitution:

The limits of integration also change:
For x=5: 
For x=15: 
So the integral becomes:

If we flip the limits we also get rid of the minus in front, and writing the root as an exponent we get:

Then applying the basic rule we get:

Since that is just half of the solid, we multiply by 2 to get the complete volume:


Answer:
Second table.
Step-by-step explanation:
A function has an additive rate of change if there is a constant difference between any two consecutive input and output values.
The additive rate of change is determined using the slope formula,

From the first table we can observe a constant difference of -6 among the y-values and a constant difference of 2 among the x-values.

For the second table there is a constant difference of 3 among the y-values and a constant difference of 1 among the x-values.
The additive rate of change of this table is

Therefore the second table has an additive rate of change of 3.
Answer:
Factor
−
1
out of
−
3
x
2
+
4
x
−
7
.
−
(
3
x
2
−
4
x
+
7
)
Step-by-step explanation:
Answer:
An equation is 92 + 2x = 180.
The congruent angles each measure 44°.
Step-by-step explanation:
1. If two angles in a triangle are congruent and unknown, we can represent that as 2x. That means 92 + 2x = 180.
2. To find the measure of each congruent angle, x, we have to solve the equation above.
Step 1: Simplify both sides of the equation.
Step 2: Subtract 92 from both sides.
Step 3: Divide both sides by 2.
x = 44 means that the congruent angles each measure 44°.