Answer: Net force is the summation of all the forces involved or acting on an object.
Explanation: For action and reaction situation it states that the Fa = -Fb. Both forces with equal magnitudes but opposite direction will cancel out each other having a zero net force.
Answer:
This question is incomplete
Explanation:
There are two major forms of energy; these are potential and kinetic energy. Kinetic energy is the energy present in moving options. Examples include mechanical and electrical energy.
The formula for kinetic energy is 1/2mv² where "m" is mass and "v" is velocity.
While potential energy is the energy present in stationary objects that can be put to use in future. Example includes a ball in its resting state. The formula for potential energy is "mgh" where "m" is mass, "g" is acceleration due to gravity and "h" is height
Considering the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. Looking at the example provided earlier for potential energy, a ball in its resting position (having a potential energy) when kicked will have a kinetic energy (which can be calculated with the formula provided earlier), hence
Total energy = potential energy (P.E) + kinetic energy (K.E)
This formula and the explanation above can be used to answer the completed question.
NOTE: There is no standard relationship between P.E and K.E. They could be directly or indirectly proportional depending on the circumstance.
Answer:
68133080.02 g
Explanation:
I believe that the question is to find the mass of air in the room and not the molar mass of air since the molar mass of air was already given in the question as 28.97 g/mol.
Now, if 1 mole of a gas occupies 22.4 L
x moles of air occupies 52,681,428.8 Liters
x = 1 * 52,681,428.8 /22.4
x = 2351849.5 moles of air
Now, number of moles = mass/ molar mass
but molar mass = 28.97 g/mol
2351849.5 = mass/28.97
mass = 2351849.5 * 28.97
mass = 68133080.02 g
Answer: Option (c) is the correct answer.
Explanation:
Activation energy or free energy of a transition state is defined as the minimum amount of energy required to by reactant molecules to undergo a chemical reaction.
So, when activation energy is decreased then molecules with lesser amount of energy can also participate in the reaction. This leads to an increase in rate of reaction.
Also, increase in temperature will help in increasing the rate of reaction.
Whereas at a given temperature, every molecule will have different energy because every molecule travels at different speed.
Hence, we can conclude that out of the given options false statement is that at a given temperature and time all molecules in a solution or a sample will have the same energy.