Knees and elbows are two of the most common ones.
Answer: (3) molecules have different molecular structures.
Explanation:
1) Oxygen (O₂) and ozone (O₃) are allotropes of each other.
2) Allotropes are different structural forms of a same element with different structures and properties, when they are in the same state: solid, liquid, gas.
3) The bonds is what define the structure and properties of the substances, so since O₂ has only two bonds and O₃ has three bonds, the properties and behaviors of the element are different.
4) Other example of allotropes are graphite and diamond: two different forms of carbon. Both, graphite and diamond are formed only by carbon atoms, but they are bonded differently so, as you know, diamond and graphite have different properties: graphite is very soft while diamond is one of the hardest known substances.
Answer:
It's C
Explanation:
Most garnet found near Earth's surface forms when a sedimentary rock with a high aluminum content, such as shale, is subjected to heat and pressure intense enough to produce schist or gneiss.
Sodium bicarbonate and acetic acid are not good substitute for sodium azide in airbags since the require more mass and produce less gas.
<h3>Which is the better chemical for an airbag?</h3>
The chemical equation for the production of nitrogen gas from sodium azide is given below:
1 mole or 66 go of sodium azide produces 3 moles or 67.2 L of nitrogen gas.
The equation for the production of carbon dioxide from sodium bicarbonate and acetic acid is given below:
- Na₂CO₃ + CH₃COOH → CH₃COONa + CO₂ + H₂O
1 mole, 106 g of Na₂CO₃ and 1 mole, 82 g of CH₃COOH are required to produce 1 mole or 22.4 L of CO₂.
The mass of sodium azide required is less than that of sodium bicarbonate and acetic acid required. Also, sodium azide produces a greater volume of gas. Therefore, sodium bicarbonate and acetic acid are not good substitute for sodium azide in airbags.
In conclusion, sodium azide is a better choice in airbags.
Learn more about airbags at: brainly.com/question/14954949
#SPJ1