<u>Answer:</u> The
for the reaction is 54.6 kJ/mol
<u>Explanation:</u>
For the given balanced chemical equation:

We are given:

- To calculate
for the reaction, we use the equation:
![\Delta G^o_{rxn}=\sum [n\times \Delta G_f(product)]-\sum [n\times \Delta G_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28reactant%29%5D)
For the given equation:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(COCl_2)})]-[(1\times \Delta G^o_f_{(CO_2)})+(1\times \Delta G^o_f_{(CCl_4)})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28COCl_2%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CO_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CCl_4%29%7D%29%5D)
Putting values in above equation, we get:
![\Delta G^o_{rxn}=[(2\times (-204.9))-((1\times (-394.4))+(1\times (-62.3)))]\\\Delta G^o_{rxn}=46.9kJ=46900J](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-204.9%29%29-%28%281%5Ctimes%20%28-394.4%29%29%2B%281%5Ctimes%20%28-62.3%29%29%29%5D%5C%5C%5CDelta%20G%5Eo_%7Brxn%7D%3D46.9kJ%3D46900J)
Conversion factor used = 1 kJ = 1000 J
- The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

- To calculate the Gibbs free energy of the reaction, we use the equation:

where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 46900 J
R = Gas constant = 
T = Temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 22.92
Putting values in above equation, we get:

Hence, the
for the reaction is 54.6 kJ/mol
Answer:Consider the reaction N2(g) + 3H2(g) =; 2NH3(g). If hydrogen gas is added to this system at equilibrium, will the reaction shift towards reactants
Among the transition metal elements, Manganese and Zinc have a slight lowering of electronegativities. The reason behind this is that the nuclear charges of these elements are slightly weaker than the other transition metal elements due to the way their valence electrons are filled up. Both Manganese and Zinc have their valence electrons filled up to the 4th shell with 1 pair of electrons (4s2) completely occupying it. Although the electrons in the 3rd shell (3d) are yet to be paired since the outer most shell is filled up, the ability of the nucleus to attract electrons is lessened. Hence, the electronegativity (or the ability to attract electrons) is lessened.
Answer:
The answer to your question is: water, polar solvent.
Explanation:
Data
sample of CaCl2
Solid copper this option is incorrect because in order to dissolve something the solvent must be liquid and this is a solid solvent.
water, I think this option is right, because CaCl2 is ionic and water is a polar solvent, CaCl2 will dissolve in water.
a polar solvent, CaCl2 will dissolve is a polar solvent like water, this option is correct.
hexane, CaCl2 will not dissolve in hexane because hexane is a non polar solvent and CaCl2 is ionic. This option is wrong
a nonpolar solvent This option is not right, CaCl2 will only dissolve in polar solvents.
liquid mercury, This option is wrong, mercury is not a solvent.
If your findings disproves your hypothesis then your hypothesis is probably wrong.