Answer:
false
Explanation:
first of all;-energy lead to an indotermic reaction.
indotermic is a reaction that absorbs energy \
*it has positive enthalpy of reaction
*Heat content of product is greater than that of reactant
*Heat is added to reactant side
example;- CO^2+2H^2+891kj --------- CH4 +2O2
Sodium has 1 valence electron and chlorine has 7 valence electrons and the goal is to get t 8 valence electrons then they attract together, forming table salt.
Answer: (2) decreasing the concentration of HCl(aq) to 0.1 M
Explanation: Rate of a reaction depends on following factors:
1. Size of the solute particles: If the reactant molecules are present in smaller size, surface of particles and decreasing the size increases the surface area of the solute particles. Hence, increasing the rate of a reaction.
2. Reactant concentration: The rate of the reaction is directly proportional to the concentration of reactants.
3. Temperature: Increasing the temperature increases the energy of the molecules and thus more molecules can react to give products and rate increases.
(1) Increasing the initial temperature to 25°C will increase the reaction rate.
(2) Decreasing the concentration of HCl(aq) to 0.1 M will decrease the reaction rate due to lesser concentration.
(3) Using 1.2 g of powdered Mg will increase the reaction rate due to large surface area.
(4) Using 2.4 g of Mg ribbon will increase the reaction rate due to high concentration of reactants.
Answer:
The charged carbon atom of a carbocation has a complete octet of valence shell electrons
Explanation:
A charged carbon atom of a carbocation has a valence shell that is not filled, <u>that's why it acts as an electrophile (or a Lewis base)</u>. This unfilled valence shell is also the reason of the nucleophilic attack that takes place during the second step of a SN1 reaction.
Answer:
0.453 moles
Explanation:
The balanced equation for the reaction is:
2Fe(s) + 3O2(g) ==> 2Fe2O3
From the equation, mass of O2 involved = 16 x 2 x 3 = 96g
mass of Fe2O3 involved = [(2x26) + 3 x 16] x 2
= 100g
Therefore 96g of O2 produced 100g of Fe2O3
32.2g of O2 Will produce 100x32.2/96
= 33.54g of Fe2O3
Converting it to mole using number of mole = mass/molar mass
but molar mass of Fe2O3 = 26 + (16 X 3)
= 74g/mole
Therefore number of mole of 33.54g of Fe2O3 = 33.54/74
= 0.453 moles