Answer:
0.465 kgm/s
Explanation:
Given that
Mass of the cart A, m1 = 450 g
Speed of the cart A, v1 = 0.85 m/s
Mass of the cart B, m2 = 300 g
Speed of the cart B, v2 = 1.12 m/s
Now, using the law of conservation of momentum.
It is worthy of note that our cart B is moving in opposite directions to A
m1v1 + m2v2 =
(450 * 0.85) - (300 * 1.12) =
382.5 - 336 =
46.5 gm/s
If we convert to kg, we have
46.5 / 100 = 0.465 kgm/s
Thus, the total momentum of the system is 0.465 kgm/s
The flashlight is powered by one or more batteries.
Batteries supply Direct current (DC) .
Answer:
20%
Explanation:
Relative Humidity (%) = (water vapor content÷water vapor capacity) × 100
=(7÷35)×100
=(0.2)×100
=20%
According to the Temperature-Water Vapor Capacity Table, the water capacity at 35 °C is 35 grams.
Water Vapor Capacity: The amount of water (grams) which air can hold at a given temperature.
Water Vapor Content: The amount of water vapor actually present in the air.
Answer:
Newton's First Law of Motion applies here.
Explanation:
Before crashing into the fence, Amy was moving at a certain speed on her bike. As, she crashed her bike into the fence, the collision stopped the bike suddenly. But, Amy had the same speed due to inertia of her body. Due tot his speed Amy did not stop and she was thrown over the fence onto the lawn. So, the force of inertia of Amy's body caused her to be overthrown in this case. We study about inertia in Newton's First Law of Motion, which is also known as Law of Inertia.
<u>Newton's First Law of Motion applies here.</u>
Answer:
D. When the box is placed in an elevator accelerating upward
Explanation:
Looking at the answer choices, we know that we want to find out how the normal force varies with the motion of the box. In all cases listed in the answer choices, there are two forces acting on the box: the normal force and the force of gravity. These two act in opposite directions: the normal force, N, in the upward direction and gravity, mg, in the downward direction. Taking the upward direction to be positive, we can express the net force on the box as N - mg.
From Newton's Second Law, this is also equal to ma, where a is the acceleration of the box (again with the upward direction being positive). For answer choices (A) and (B), the net acceleration of the box is zero, so N = mg. We can see how the acceleration of the elevator (and, hence, of the box) affects the normal force. The larger the acceleration (in the positive, i.e., upward, direction), the larger the normal force is to preserve the equality: N - mg = ma, N = ma+ mg. Answer choice (D), in which the elevator is accelerating upward, results in the greatest normal force, since in that case the magnitude of the normal force is greater than gravity by the amount ma.