If time is specified, the distance may be estimated in constant acceleration using the formula: X=(at2)/2 if the beginning velocity is 0. (A automobile begins from a stop...) As a result, X=(6*10*10)/2=600/2 = 300 m.
Preserved fossil<span> (like a fossil in amber, ice or tar.</span>
The correct answer is A, 2x^3 - x^2 +3x +7
Answer:
The minimum frequency required to ionize the photon is 111.31 ×
Hertz
Given:
Energy = 378 
To find:
Minimum frequency of light required to ionize magnesium = ?
Formula used:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
Solution:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
738 ×
= 6.63 ×
× v
v = 111.31 ×
Hertz
The minimum frequency required to ionize the photon is 111.31 ×
Hertz