Answer:

Explanation:
<u>Molecular formula from Glucose:</u>
C₆H₁₂O₆
<u>3 moles of Glucose:</u>
3C₆H₁₂O₆
In 1 mole of Glucose, there are 12 hydrogen atoms.
<u>In 3 moles:</u>
= 12 × 3
= 36 H atoms
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
The answer is
<h2>1.38 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of liquid = 138 g
volume = 100 mL
The density of the liquid is

We have the final answer as
<h3>1.38 g/mL</h3>
Hope this helps you
Answer:
Absorbing beta particle because the beta is the numbers and are less and the big numbers are positive and they are the alpha so when you add beta particle it is called Absorbing so the answer is Absorbing beta particle
Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL
Answer:
Molecules in liquids are held to other molecules by intermolecular interactions, which are weaker than the intramolecular interactions that hold the atoms together within molecules and polyatomic ions.