Answer:
54 grams ammonium chloride and 40 grams sodium hydroxide
Explanation:
A buffer is a solution that contains either a weak acid and its salt or a weak base and its salt, the solution is resistant to changes in pH. This means that, a buffer is an aqueous solution of either a weak acid and its conjugate base or a weak base and its conjugate acid.
A Buffer is used to maintain a stable pH in a solution, buffers can neutralize small quantities of additional acid of base. For any buffer solution, there is always a working pH range and a set amount of acid or base that can be neutralized before the pH will change. The amount of acid or base that can be added to a buffer before changing its pH is called its buffer capacity.
A good buffer mixture is supposed to have about equal concentrations of its both components. It is a rule of thumb therefore, that a buffer solution has generally lost its usefulness when one component of the buffer pair is less than about 10% of the other component.
The implication of this is that the ammonium chloride and sodium hydroxide should be of approximately the same concentration. If the masses are dissolved as shown in the answer, then we will have 1molL-1 of each component of the buffer in accordance with the rule of thumb stated above.
The ionic formula of sodium oxide would be Na20
A carbohydrate comes from a chain of carbon atoms with an H2O associated with each other
Answer:
condensing water
Explanation:
Entropy refers to the level of disorderliness in a system. The entropy of liquids is greater than that of solids. The entropy of gases is greater than that of liquids.
A process of physical change involving a change of state from solid to liquid or liquid to gas is accompanied by increase in entropy.
However, a change of state involving a change from liquid to solid or gas to liquid is accompanied by decrease in entropy.
Hence, steam condensing to water leads to decrease and not increase in entropy of the system.
D. radioactive isotopes are one of the environmental waste products of nuclear energy.