1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliya0001 [1]
3 years ago
13

Can someone please help me out with this problem

Mathematics
2 answers:
GREYUIT [131]3 years ago
8 0
8 x 8= 64 so 8 is your answer.
tensa zangetsu [6.8K]3 years ago
5 0

Answer: it's 8.

Step-by-step explanation:

You might be interested in
Letter C need help on 6-11
mamaluj [8]
3/6 divide numerator and denominator by 3 and get 1/2
12/20 divide the numerator and denominator by 2 ,and get 6/10 divide by 2,and get a final answer of 3/5.
8/24 divide the numerator and denominator by 8 ,and get 1/3.
30/40 divide the numerator and denominator by 10 ,and get 3/4

I hope this helps you,and good luck.
3 0
3 years ago
Read 2 more answers
Fill in the rest of the table.
Vinvika [58]

9514 1404 393

Answer:

top-down

  f(g(x)) = 1, 4, 5, 3, 2

  g(f(x)) = 5, 2, 4, 1, 3

Step-by-step explanation:

To find f(g(x)), locate g(x) in the third column (labeled g(x)). Use that value as x in the first column, then read f(x) from the second column.

Example: f(g(1)) = f(2) = 1

__

To find g(f(x)), locate f(x) in the second column (labeled f(x)). Use that value as x in the first column, and read the corresponding g(x) from the third column.

Example: g(f(1)) = g(2) = 5

6 0
3 years ago
What is the answer to 23,450 to the nearest thousands
miss Akunina [59]

Answer:

23,000

Step-by-step explanation:

brainliest

4 0
3 years ago
Which number line shows the solution to 2/3x - 5 > 3
NNADVOKAT [17]

Answer:

3

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
write an equation for the perpendicular bisector of the line joining the two points. PLEASE do 4,5 and 6
myrzilka [38]

Answer:

4. The equation of the perpendicular bisector is y = \frac{3}{4} x - \frac{1}{8}

5. The equation of the perpendicular bisector is y = - 2x + 16

6. The equation of the perpendicular bisector is y = -\frac{3}{2} x + \frac{7}{2}

Step-by-step explanation:

Lets revise some important rules

  • The product of the slopes of the perpendicular lines is -1, that means if the slope of one of them is m, then the slope of the other is -\frac{1}{m} (reciprocal m and change its sign)
  • The perpendicular bisector of a line means another line perpendicular to it and intersect it in its mid-point
  • The formula of the slope of a line is m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
  • The mid point of a segment whose end points are (x_{1},y_{1}) and (x_{2},y_{2}) is (\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})
  • The slope-intercept form of the linear equation is y = m x + b, where m is the slope and b is the y-intercept

4.

∵ The line passes through (7 , 2) and (4 , 6)

- Use the formula of the slope to find its slope

∵ x_{1} = 7 and x_{2} = 4

∵ y_{1} = 2 and y_{2} = 6

∴ m=\frac{6-2}{4-7}=\frac{4}{-3}

- Reciprocal it and change its sign to find the slope of the ⊥ line

∴ The slope of the perpendicular line = \frac{3}{4}

- Use the rule of the mid-point to find the mid-point of the line

∴ The mid-point = (\frac{7+4}{2},\frac{2+6}{2})

∴ The mid-point = (\frac{11}{2},\frac{8}{2})=(\frac{11}{2},4)

- Substitute the value of the slope in the form of the equation

∵ y = \frac{3}{4} x + b

- To find b substitute x and y in the equation by the coordinates

   of the mid-point

∵ 4 = \frac{3}{4} × \frac{11}{2} + b

∴ 4 = \frac{33}{8} + b

- Subtract  \frac{33}{8} from both sides

∴ -\frac{1}{8} = b

∴ y = \frac{3}{4} x - \frac{1}{8}

∴ The equation of the perpendicular bisector is y = \frac{3}{4} x - \frac{1}{8}

5.

∵ The line passes through (8 , 5) and (4 , 3)

- Use the formula of the slope to find its slope

∵ x_{1} = 8 and x_{2} = 4

∵ y_{1} = 5 and y_{2} = 3

∴ m=\frac{3-5}{4-8}=\frac{-2}{-4}=\frac{1}{2}

- Reciprocal it and change its sign to find the slope of the ⊥ line

∴ The slope of the perpendicular line = -2

- Use the rule of the mid-point to find the mid-point of the line

∴ The mid-point = (\frac{8+4}{2},\frac{5+3}{2})

∴ The mid-point = (\frac{12}{2},\frac{8}{2})

∴ The mid-point = (6 , 4)

- Substitute the value of the slope in the form of the equation

∵ y = - 2x + b

- To find b substitute x and y in the equation by the coordinates

   of the mid-point

∵ 4 = -2 × 6 + b

∴ 4 = -12 + b

- Add 12 to both sides

∴ 16 = b

∴ y = - 2x + 16

∴ The equation of the perpendicular bisector is y = - 2x + 16

6.

∵ The line passes through (6 , 1) and (0 , -3)

- Use the formula of the slope to find its slope

∵ x_{1} = 6 and x_{2} = 0

∵ y_{1} = 1 and y_{2} = -3

∴ m=\frac{-3-1}{0-6}=\frac{-4}{-6}=\frac{2}{3}

- Reciprocal it and change its sign to find the slope of the ⊥ line

∴ The slope of the perpendicular line = -\frac{3}{2}

- Use the rule of the mid-point to find the mid-point of the line

∴ The mid-point = (\frac{6+0}{2},\frac{1+-3}{2})

∴ The mid-point = (\frac{6}{2},\frac{-2}{2})

∴ The mid-point = (3 , -1)

- Substitute the value of the slope in the form of the equation

∵ y = -\frac{3}{2} x + b

- To find b substitute x and y in the equation by the coordinates

   of the mid-point

∵ -1 = -\frac{3}{2} × 3 + b

∴ -1 = -\frac{9}{2} + b

- Add  \frac{9}{2}  to both sides

∴ \frac{7}{2} = b

∴ y = -\frac{3}{2} x + \frac{7}{2}

∴ The equation of the perpendicular bisector is y = -\frac{3}{2} x + \frac{7}{2}

8 0
3 years ago
Other questions:
  • Miles carried the football for an average of 5 yards per carry in the game. If he carried the ball 8 times, how many yards did h
    8·1 answer
  • Mike and Krista rent a jet ski while on vacation. The rental cost is represented by the function c(h)=50+20h, where the number o
    9·1 answer
  • 1. If the length of a rectangle is decreased by 4 cm and the width is increased by 5 cm, the result will be a square, the area o
    6·1 answer
  • Can someone check questions?
    12·1 answer
  • Find the area (PLEASE HELP DUE SOON!!! thanks xo)
    7·2 answers
  • The length of the blue ribbon is two-thirds the length of the red ribbon. Write an equation to find the length r of the red ribb
    12·2 answers
  • Dawn bought 12 grams of chocolate. She ate half of the chocolate. How many grams of chocolate did she eat​
    10·1 answer
  • Solve for x. Show all work. Then, plug in the x value you got to check your work<br> 3(x+2)-4=4(x-3)
    10·2 answers
  • Help now pls thank u
    10·1 answer
  • How can you find the length of an arc
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!