1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Law Incorporation [45]
3 years ago
14

What is the magnetic force of a 30m long power line that carries a current of 50A. The magnetic field runs perpendicular to the

power line and has a strength of 30T.
A. 45000 T/N

B. 45 V

C. 45 N

D. 45000 N
Physics
1 answer:
Ne4ueva [31]3 years ago
8 0

Answer:

F=BILsin90 when perpendicular sin90 =1 30T x50x30 so you can get 45000N

You might be interested in
Different asteroids reflect different percentages of the light falling on them. This is due to the fact that they have different
Georgia [21]

Due to the Composition, different asteroids reflect different percentages of the light falling on them.

What are Asteroids:

  • Asteroids are small, rocky objects that orbit the Sun. Although asteroids orbit the Sun like planets, they are much smaller than planets.
  • Asteroids are generally made up of rocky material, metals and their size are large in  comparison to comets. Asteroid belt is found between Jupiter and Mars.

Composition of Asteroids:

  • Most of the asteroids in the Main Belt are made of rock and stone.
  • The remaining asteroids are made up of a mix of these, along with carbon-rich materials. Some of the more distant asteroids tend to contain more ices.

We determine reflectivity of asteroids by comparing the brightness of light in the visible spectrum to the brightness of light in the infrared spectrum. The light shining from asteroids is reflected sunlight.

Hence we can say that,

Due to the Composition, different asteroids reflect different percentages of the light falling on them.

Learn more about Asteroids here:

<u>brainly.com/question/13047582</u>

<u />

#SPJ4

4 0
1 year ago
A projectile of mass m is launched with an initial velocity vector v i making an angle θ with the horizontal as shown below. The
sergeinik [125]
Angular momentum is given by the length of the arm to the object, multiplied by the momentum of the object, times the cosine of the angle that the momentum vector makes with the arm. From your illustration, that will be: 
<span>L = R * m * vi * cos(90 - theta) </span>

<span>cos(90 - theta) is just sin(theta) </span>
<span>and R is the distance the projectile traveled, which is vi^2 * sin(2*theta) / g </span>

<span>so, we have: L = vi^2 * sin(2*theta) * m * vi * sin(theta) / g </span>

<span>We can combine the two vi terms and get: </span>

<span>L = vi^3 * m * sin(theta) * sin(2*theta) / g </span>

<span>What's interesting is that angular momentum varies with the *cube* of the initial velocity. This is because, not only does increased velocity increase the translational momentum of the projectile, but it increase the *moment arm*, too. Also note that there might be a trig identity which lets you combine the two sin() terms, but nothing jumps out at me right at the moment. </span>

<span>Now, for the first part... </span>

<span>There are a few ways to attack this. Basically, you have to find the angle from the origin to the apogee (highest point) in the arc. Once we have that, we'll know what angle the momentum vector makes with the moment-arm because, at the apogee, we know that all of the motion is *horizontal*. </span>

<span>Okay, so let's get back to what we know: </span>

<span>L = d * m * v * cos(phi) </span>

<span>where d is the distance (length to the arm), m is mass, v is velocity, and phi is the angle the velocity vector makes with the arm. Let's take these one by one... </span>

<span>m is still m. </span>
<span>v is going to be the *hoizontal* component of the initial velocity (all the vertical component got eliminated by the acceleration of gravity). So, v = vi * cos(theta) </span>
<span>d is going to be half of our distance R in part two (because, ignoring friction, the path of the projectile is a perfect parabola). So, d = vi^2 * sin(2*theta) / 2g </span>

<span>That leaves us with phi, the angle the horizontal velocity vector makes with the moment arm. To find *that*, we need to know what the angle from the origin to the apogee is. We can find *that* by taking the arc-tangent of the slope, if we know that. Well, we know the "run" part of the slope (it's our "d" term), but not the rise. </span>

<span>The easy way to get the rise is by using conservation of energy. At the apogee, all of the *vertical* kinetic energy at the time of launch (1/2 * m * (vi * sin(theta))^2 ) has been turned into gravitational potential energy ( m * g * h ). Setting these equal, diving out the "m" and dividing "g" to the other side, we get: </span>

<span>h = 1/2 * (vi * sin(theta))^2 / g </span>

<span>So, there's the rise. So, our *slope* is rise/run, so </span>

<span>slope = [ 1/2 * (vi * sin(theta))^2 / g ] / [ vi^2 * sin(2*theta) / g ] </span>

<span>The "g"s cancel. Astoundingly the "vi"s cancel, too. So, we get: </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ sin(2*theta) ] </span>

<span>(It's not too alarming that slope-at-apogee doesn't depend upon vi, since that only determines the "magnitude" of the arc, but not it's shape. Whether the overall flight of this thing is an inch or a mile, the arc "looks" the same). </span>

<span>Okay, so... using our double-angle trig identities, we know that sin(2*theta) = 2*sin(theta)*cos(theta), so... </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ 2*sin(theta)*cos(theta) ] = tan(theta)/4 </span>

<span>Okay, so the *angle* (which I'll call "alpha") that this slope makes with the x-axis is just: arctan(slope), so... </span>

<span>alpha = arctan( tan(theta) / 4 ) </span>

<span>Alright... last bit. We need "phi", the angle the (now-horizontal) momentum vector makes with that slope. Draw it on paper and you'll see that phi = 180 - alpha </span>

<span>so, phi = 180 - arctan( tan(theta) / 4 ) </span>

<span>Now, we go back to our original formula and plug it ALL in... </span>

<span>L = d * m * v * cos(phi) </span>

<span>becomes... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( 180 - arctan( tan(theta) / 4 ) ) ] </span>

<span>Now, cos(180 - something) = cos(something), so we can simplify a little bit... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( arctan( tan(theta) / 4 ) ) ] </span>
3 0
3 years ago
Read 2 more answers
Everyone open this please!
notsponge [240]

Answer:

yeah i knowwwwwwwwwwwwww

Explanation:

7 0
3 years ago
Read 2 more answers
A 60 kilogram student jumps down from a laboratory counter. At the instant he lands on the floor hus speed is 3 meters per secon
erastovalidia [21]

As per Newton's law rate of change in momentum is net force

so we can write it as

F = \frac{dP}{dt}

F = \frac{m(v_f - v_i)}{\Delta t}

now we know that

m = 60 kg

v_f = 3 m/s

v_i = 0

\Delta t= 0.2 s

from above equation

F = \frac{60(3 - 0)}{0.2} = 900 N

so he will experience 900 N force in above case

5 0
2 years ago
Need help with these please
Montano1993 [528]

Answer:

Explanation:

Which number all or one?

6 0
3 years ago
Read 2 more answers
Other questions:
  • a trombone can be modeled like an open closed air tube. the trombone plays a fifth harmonic of 159 hz. the speed of sound is 343
    6·1 answer
  • ANSWER ASAP
    10·2 answers
  • Human activities that impact the water cycle
    6·1 answer
  • Color is unreliable for identifying minerals because
    11·1 answer
  • HELP! Ammeters are placed on each branch of a parallel circuit. How will their readings compare?
    14·1 answer
  • Part A What is the resistance of a 4.4 m length of copper wire 1.3 mm n diameter? The resistivity of copper is 1.68x 10-8 Ω-m Ex
    15·1 answer
  • The energy supplied to a speaker is increased. What will happen to the sound the speaker produces? A) The sound will be lower pi
    10·2 answers
  • A car of mass 1200Kilograms moving at 15 m/s the driver applies the brakes for 0.08 seconds and the castles down to 10 meter per
    12·1 answer
  • Each of the rods depicted below were machined from same stock metal. They were originally machined to be the same length, but th
    8·1 answer
  • What is the structural unit of a substance called​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!