Answer:
(a) Bus will traveled further a distance of 40 m
(b) It will take 7.5 sec to stop the bus
Explanation:
We have given initial velocity of the bus u = 24 m/sec
And final velocity v = 16 m/sec
Distance traveled in this process s = 50 m
From third equation of motion we know that 


(a) Now as the bus finally stops so final velocity v = 0 m/sec
So 

s= 90 m
So further distance traveled by bus = 90-50 =40 m
(b) Now as the bus finally stops so final velocity v= 0 m/sec
Initial velocity u = 24 m/sec
Acceleration 
So time 
Calculate its average speed in meters per second
Answer:
5.77 m/s
Explanation:
Speed= Distance/Time
Distance= 40+ half of 40= 40+20= 60 m
Time= 8.8+1.6=10.4 s
Average speed= 60/10.4=5.769230769 m/s
Approximately, the average speed is 5.77 m/s
Answer:
Speed of the airplane 10.0 s later = 12.2 m/s
Explanation:
Mass of Boeing 777 aircraft = 300,000 kg
Braking force = 445,000 N
Deceleration

Initial velocity, u = 27 m/s
Time , t = 10 s
We have equation of motion, v =u +at
v = 27 + (-1.48) x 10 = 27 - 14.8 = 12.2 m/s
Speed of the airplane 10.0 s later = 12.2 m/s
Answer:
To obtain the power, we first need to find the work made by the force.
1) To calculate the work, we need the next equation:

So the force is given by the problem so our mission is to find 'dx' in terms of 't'
2) we know that:

So we have:

Then:

3) Finally, we replace everything:

After some calculation, we have as a result that the work is:
161.9638 J.
4) To calculate the power we need the next equation:

So
P = 161.9638/4.7 = 34.46 W