Albert Einstein came up with the theory of general relativity to explain the law of gravity, whilst Newton's three laws of gravity is universal. To understand this further, it's best to understand it in scientific terms.
The weird thing about science is that words that are used in a colloquial sense may have a completely opposite definition in scientific terms.
A law in science is a constant and invariable statement that is universal. Wherever you may be in the universe, Newton's three laws of gravity will always be applied.
The word "theory" doesn't imply conjecture or an idea someone made up after a night of drinking. In science, a theory is the highest level of certainty behind mathematical proof -- which isn't even a part of science, obviously. A theory has to be substantiated by all available evidence and contradicted by none. All theories also have to have to be falsifiable. For this reason, theories can never be proven. Einstein's theory of general relativity has great predictive power, but in some cases, the predictions aren't always constant. Theories are often revised to fit new available evidence.
Neutrons are neutral<span> and </span>do<span> not </span>have<span> any </span>charge<span> at all. Protons carry a positive </span>charge<span>, and electrons carry the negative </span><span>charge.</span>
Answer:
Positive z-direction
Explanation:
According to Fleming's right hand rule, point the fingers of your right hand in the direction of Electric field E ( positive x-direction), and curl your fingers toward magnetic field B (positive y-direction), and your thumb points in the direction of propagation of wave (positive z-direction).
Therefore, the correct option will be positive z-direction.
The answer is shorter the wavelength, higher the frequency and higher the energy.
<u>Explanation:</u>
The sun radiates UV energy in a wide range of wavelength, which are invisible to human eyes. The shorter the wavelength, the more energetic the radiation, and the greater the potential for harm.
The relationship between wavelength and wave energy is shorter the wavelength, higher the frequency and higher the energy.
It has a frequency ranges from 8 × 10^14 to 3 × 10^16 cycles per second, or hertz (Hz), and wavelengths id about 380 nanometers to about 10 nm.
Impulse = change in momentum = F x dt
Where F is sufficiently large and dt is very small(tending to zero).
Therefore impulse = mass x final velocity - mass x initial velocity
= 975 x 3 - 975 x 0.5
= 2437.5 Kg-m/s.
Hence option C is correct.