Water, land. breath using skin and lungs
Answer:
Yes. Inertia keeps the speed maintained though my feet leave the ground.
Explanation:
Inertia is the resistance to the change in position of any object this means this resistance will keep me traveling at 30 km/s relative to the sun. If the person wants to change the position we apply force to do that because inertia is opposing us to not do that. We are always traveling with 30km/s relative to sun due to inertia.
The fiducial points of the Celsius<span> and the </span>Fahrenheit<span> temperature </span>scales<span> are the boiling and freezing </span>points<span> of pure water at 1 atm of pressure.
In short, Your Answer would be Option D
Hope this helps!</span>
"Changing water salinity" is the most significant challenge for organisms that live in estuaries.
<u>Answer:</u> Option D
<u>Explanation:</u>
For estuaries, alkalinity levels are usually the maximum at a river's mouth where the ocean water falls for, and the minimum upstream where freshwater falls in. Although salinity vary throughout the tidal cycle. In estuaries, salinity rates usually decrease in spring as snow melt and rain raises the freshwater flow from streams and groundwater.
It influences the chemical environments within the estuary, especially the dissolved oxygen (DO) levels in the water. The level of oxygen that would get dissolved in water or its solubility get declined when the alkalinity rises.
Answer:
Explanation:
Given that:
the initial angular velocity 
angular acceleration
= 4.44 rad/s²
Using the formula:

Making t the subject of the formula:

where;

∴

t = 0.345 s
b)
Using the formula:

here;
= angular displacement
∴



Recall that:
2π rad = 1 revolution
Then;
0.264 rad = (x) revolution

x = 0.042 revolutions
c)
Here; force = 270 N
radius = 1.20 m
The torque = F * r

However;
From the moment of inertia;

given that;
I = 84.4 kg.m²

For re-tardation; 
Using the equation



t = 0.398s
The required time it takes= 0.398s