Answer:
Explanation:
Part A) Using
light intensity I= P/A
A= Area= π (Radius)^2= π((0.67*10^-6m)/(2))^2= 1.12*10^-13 m^2
Radius= Diameter/2
P= power= 10*10^-3=0.01 W
light intensity I= 0.01/(1.12*10^-13)= 9*10^10 W/m^2
Part B) Using
I=c*ε*E^2/2
rearrange to solve for E=
((I*2)/(c*ε))
c is the speed of light which is 3*10^8 m/s^2
ε=permittivity of free space or dielectric constant= 8.85* 10^-12 F⋅m−1
I= the already solved light intensity= 8.85*10^10 W/m^2
amplitude of the electric field E=
(9*10^10 W/m^2)*(2) / (3*10^8 m/s^2)*(8.85* 10^-12 F⋅m−1)
---> E=
(1.8*10^11) / (2.66*10^-3) =
(6.8*10^13) = 8.25*10^6 V/m
Answer:
Time, t = 0.87 seconds
Explanation:
Given that,
Initial velocity of the object, u = 4.3 m/s
The coefficient of kinetic friction between horizontal tabletop and the object is 0.5
We need to find the time taken by the object for the object to come to rest i.e. final velocity will be 0.
Using first equation of motion to find it as :

a is the acceleration, here, 


So, the time taken by the object to come at rest is 0.87 seconds. Hence, this is the required solution.
Answer:
Increase in mass and height
Explanation:
The gravitational potential energy of an object can increase if the mass and height of object is increased.
Gravitational potential energy is the energy due to the position of a body.
It is expressed as:
Gravitational potential energy = mass x acceleration due gravity x height
Increasing mass and height will cause an increase in gravitational potential energy.
The meter out circuit is the flow control circuit design that can most effectively control an overrunning load.
The meter-out circuit can be very accurate, but are not efficient. The meter-out circuit can control overrunning as well as opposing loads while the other one method must be used with opposing loads only. The choice of flown control valve method and the location of the flow control in the circuit are dependent on the type of application being controlled.
<h3>What is a Circuit ?</h3>
In electronics, a circuit is a complete circular conduit through which electricity flows. A simple circuit consists of conductors, a load, and a current source. The term "circuit" broadly refers to any continuous path via which electricity, data, or a signal might flow.
- The directional valve shifts, causing the actuator to move faster than pump flow can fill it due to an overrunning load. Oil is leaking from one side, whereas there is none on the other.
Hence, flow control circuit design that can best control an overrunning load is the opposing circuit
Learn more about Circuit here:
brainly.com/question/26064065
#SPJ4