Hello!
Your answer would be polar covalent.
Covalent bonds are where two atoms come together, and share electrons between each other, and are therefore, bonded.
In some cases of molecules that are bonded with a covalent bond, one of the atoms is more, you could call it selfish, and takes more of the electrons. A prime example of this is H20, or water. One of the atoms takes the electrons for longer, and therefore has a more negative charge because electrons are counted as negative charges.
This bond where an atom "hogs" electrons, is called a polar covalent bond, respective to the changing charges for the atoms.
So your answer is d.
Hope this helped!
Answer:
see explanation
Explanation:
The process of ionization to produce cations is endothermic. For formation of Ca⁺² two ionization steps need be illustrated as follows...
1st ionization step: Ca° + 590Kj => Ca⁺ + e⁻
2nd ionization step: Ca⁺ + 1151Kj => Ca⁺² + e⁻
__________________________________-
Net Ionization Rxn: Ca° + 1741Kj => Ca⁺² + 2e⁻
Answer:
Synthesis - 4
reversible- 2
exchange- 1
decomposition-3
Explanation:
In synthesis reaction two or more components combines to form a single product. example 2H2+O2⇒2H2O
In reversible reaction two reactants combine to form two products . The products then reacts and forms back the reactants. example N2 +3H2 ⇒2NH3
In exchange reaction there is an alternation of ions of reactants to form new products. AB+CD ⇒AC + BD
In decomposition reaction, molecules of a compound break down by the action of heat or light or catalyst. example CaCO3 ⇒CaO +CO2
Solving this chemistry is a little bit hard because the question didn't give some important detailed.
So first, there are a couple problems with your question.
We will just need to know which direction will it proceed to reach equilibrium.
Your expression for Kc (and Qc ) for the reaction should be:
Kc = [C] / [A] [B]^2
You have not provided a value for Kc, so a value of Qc tells you absolutely nothing. Qc is only valuable in relation to a numerical value for Kc. If Qc = Kc, then the reaction is at equilibrium. If Q < K, the reaction will form more products to reach equilibrium, and if Q > Kc, the reaction will form more reactants.
B. solvent
solute is the substance being dissolved