Answer:
The new pressure is 53.3 kPa
Explanation:
This problem can be solved by this law. when the volume remains constant, pressure changes directly proportional as the Aboslute T° is modified.
T° increase → Pressure increase
T° decrease → Pressure decrease
In this case, temperature was really decreased. So the pressure must be lower.
P₁ / T₁ = P₂ / T₂
80 kPa / 300K = P₂/200K
(80 kPa / 300K) . 200 K = P₂ → 53.3 kPa
The natural environment or natural world encompasses all living and non-living things occurring naturally, meaning in this case not artificial.
Boyle’s law gives the relationship between pressure and volume of gases. It states that at constant temperature the pressure of gas is inversely proportional to volume of gas.
PV = k
Where P is pressure V is volume and k is constant
P1V1 = P2V2
Parameters at STP are on the left side and parameters for the second instance are on the right side of the equation
P1 - standard pressure - 1.0 atm
Substituting the values in the equation
1.0 atm x 5.00 L = P x 15.0 L
P = 0.33 atm
New pressure is 0.33 atm
Answer:
The pH of 0.001 M HNO3 is pH 2.0