1. The answer is 729 (Question 2 idk)
Answer:
24 x 4 = k x 4
Step-by-step explanation:
The equation is
(X + 3) + (x + 3 ✖️3)=44
Ethan had 12 baseballs.
Steps:
1. You do 44 dived by 3 which is 14.66 repeating
2. You subtract 3
2. You get 11.66 repeating
3. You round up to 12
Answer:
Avicenna can expect to lose money from offering these policies. In the long run, they should expect to lose ___33__ dollars on each policy sold
Step-by-step explanation:
Given :
The amount the company Avicenna must pay to the shareholder if the person die before 70 years = $ 26,500
The value of each policy = $497
It is given that there is a 2% chance that people will die before 70 years and 98% chance that people will live till the age 70.
The expected policy to be sold= policy nominal + chances of death
= 497 + [98% (no pay) + 2% (pay)]
= 497 + [98%(0) + 2%(-26500)]
(The negative sign shows that money goes out of the company)
= 497 - 2% (26500)
= 497 - 530
=33
Therefore the company loses 33 dollar on each policy sold in the long run.
Answer:
i)W = 2500 / T
ii) W = 500 Tons
iii) grad W(10°) = - 25î
iv) The formulation is not practical
Step-by-step explanation:
i) Write an equation describing the use of coal
As use of coal is inversely proportional to the average monthly temperature
if W is use of coal in tons/per month then
W(t) = k / T where k is a constant of proportionality and T is the average temperature in degrees. We have to determine k from given conditions
k = ?? we know that when T = 25° W = 100 tons the by subtitution
W = k/T 100 = k /25 k = 2500 Tons*degree
Then final equation is:
W = 2500 / T
ii) Find the amount of coal when T = 5 degrees
W = 2500 / 5
W = 500 Tons
iii)
The inverse proportionality implies that W will decrease as T increase.
The vector gradient of W function is:
grad W = DW(t)/dt î
grad W = - 2500/T² î
Wich agrees with the fact that W is decreasing.
And when T = 100°
grad W(10°) = - 2500/ 100 î ⇒ grad W(10°) = - 25î
iv) When T = 0 The quantity of coal tends to infinite and the previous formulation is not practical