Answer:
The model, called the kinetic theory of gases, assumes that the molecules are very small relative to the distance between molecules. ... The molecules are in constant random motion, and there is an energy (mass x square of the velocity) associated with that motion. The higher the temperature, the greater the motion.
Answer:
If the system consists of the block only, the work done by the gravity is negative.
If the system consists of the block and the earth the work done by the gravity is zero.
Explanation:
If the system consists of the block only, then the system experiences two external forces: one exerted by the hand that lifts the block vertically upward and other exerted by the earth (gravity), which is opposed to the movement of the system, so the work done by gravity is negative.
On the other hand, if the system consists of the block and the earth, then only exists a external force which is the exerted by the hand. So, the force exerted by gravity is zero.
We don't know Carter, and we don't know where he is or what
he's doing, so I'm taking a big chance speculating on an answer.
I'm going to say that if Carter is pretty much just standing there,
or, let's say, lying on the ground taking a nap, then the force of
the ground acting on him is precisely exactly equal to his weight.
The radial velocity method preferentially detects large planets close to the central star
- what is the Radial velocity:
The radial velocity technique is able to detect planets around low-mass stars, such as M-type (red dwarf) stars.
This is due to the fact that low mass stars are more affected by the gravitational tug of planets.
When a planet orbits around a star, the star wobbles a little.
From this, we can determine the mass of the planet and its distance from the star.
hence we can say that,
option D is correct.
The radial velocity method preferentially detects large planets close to the central star
Learn more about radial velocity here:
<u>brainly.com/question/13117597</u>
#SPJ4