Answer:
Since a/2⁽ⁿ ⁺ ¹⁾b < a/2ⁿb, we cannot find a smallest positive rational number because there would always be a number smaller than that number if it were divided by half.
Step-by-step explanation:
Let a/b be the rational number in its simplest form. If we divide a/b by 2, we get another rational number a/2b. a/2b < a/b. If we divide a/2b we have a/2b ÷ 2 = a/4b = a/2²b. So, for a given rational number a/b divided by 2, n times, we have our new number c = a/2ⁿb where n ≥ 1
Since
= a/(2^∞)b = a/b × 1/∞ = a/b × 0 = 0, the sequence converges.
Now for each successive division by 2, a/2⁽ⁿ ⁺ ¹⁾b < a/2ⁿb and
a/2⁽ⁿ ⁺ ¹⁾b/a/2ⁿb = 1/2, so the next number is always half the previous number.
So, we cannot find a smallest positive rational number because there would always be a number smaller than that number if it were divided by half.
Step-by-step explanation:
there 5^(n+1) + 5^(n+2) = 5^n x 5^1 + 5^n x 5^2 breaking them as x^(a+b) = x^a x x^b
then taking common 5^n from both terms
5n-4 = 6 gives the equation for 5 times #Nathan rode less 4 miles which solves to n = 2
Nathan rode 2 miles. (5*2)-4 = 6 10-4=6 so 2 miles is right