Let's rewrite the binomial as:
![(1 - 2x)^{19}](https://tex.z-dn.net/?f=%281%20-%202x%29%5E%7B19%7D)
![\text{Binomial expansion:} (1 + x)^{n} = \sum_{r = 0}^n\left(\begin{array}{ccc}n\\r\end{array}\right) (x)^{r}](https://tex.z-dn.net/?f=%5Ctext%7BBinomial%20expansion%3A%7D%20%281%20%2B%20x%29%5E%7Bn%7D%20%3D%20%5Csum_%7Br%20%3D%200%7D%5En%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7Dn%5C%5Cr%5Cend%7Barray%7D%5Cright%29%20%28x%29%5E%7Br%7D)
Using the binomial expansion, we get:
![\text{Binomial expansion: } (1 - 2x)^{19} = \sum_{r = 0}^{19}\left(\begin{array}{ccc}19\\r\end{array}\right) (-2x)^{r}](https://tex.z-dn.net/?f=%5Ctext%7BBinomial%20expansion%3A%20%7D%20%281%20-%202x%29%5E%7B19%7D%20%3D%20%5Csum_%7Br%20%3D%200%7D%5E%7B19%7D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D19%5C%5Cr%5Cend%7Barray%7D%5Cright%29%20%28-2x%29%5E%7Br%7D)
For the 15th term, we want the term where r is equal to 14, because of the fact that the first term starts when r = 0. Thus, for the 15th term, we need to include the 0th or the first term of the binomial expansion.
Thus, the fifteenth term is:
Answer:
Step-by-step explanation:
a ) The worth of Jean-Claude's gnome after 1 year
= 80000 x 1.02
= £81600
b ) common ratio of geometric progression
= 81600 / 80000
= 1.02
c ) worth after 10 years
= 80000 x 1.02¹⁰
= 80000 x 1.21899
= £97519.55
d )
120000 = 80000 x
1.5 = ![1.02^k](https://tex.z-dn.net/?f=1.02%5Ek)
ln1.5 = k ln 1.02
k = ln 1.5 / ln 1.02
= .4054 / .0198
= 20.47 years .
It would be seven centimeters on each side'
575 / 14
Use easy multiples of 14 that do not exceed 575. Use 10.
(1) 14*10 = 140 575 -140 = 435
(2) 14*10 = 140 435 - 140 = 295
(3) 14*10 = 140 295 -140 = 155
(4) 14*10 = 140 155 - 140 = 15
Now you cannot use another 10*14. Then just divide 15 by 14 which gives 1 and have remainder 1
(5) 15/14 = 1
15 - 14 = 1 = Remainder
Then, the sum of the partial quotients is 10+10+10+10+1 = 41; and you have remainder 1, therefore 575 = 41*14 + 1
And the result of the division is 575/14 = 41 plus remainder 1