The magnitude of the vector B is 10.9
A vector is a quantity which has magnitude as well as direction and it follows vector laws of addition.
To calculate the magnitude of the vector, we have to put the square of the components of the vector along the axes under the root.
Vector B has components,
x = 2.4
y = 9.8
z = 4.1
Applying the formula,
|B| = √x²+y²+z²
|B| = √(2.4)² + (9.8)² + (4.1)²
|B| = √5.76+96.04+16.81
|B| = √118.61
|B| = 10.9
Talking about the direction the the Vector B, it will be the line joining the origin with the points (2.4,9.8,4.1)
To know more about Vectors, visit,
brainly.com/question/25705666
#SPJ9
Answer:
105 mg
Explanation:
Given that:
1 baked potato provides 30 mg of vitamin C.
So,
70 baked potatoes provide
mg of vitamin C
Also,
70 potatoes = 20 lb
So,
20 lb potatoes provide
mg of vitamin C
Thus,
1 lb potatoes provide
mg of vitamin C
<u>Thus, 105 mg of Vitamin C are provided per pound of the potatoes.</u>
Answer:
The skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Explanation:
To solve the problem it is necessary to go back to the theory of conservation of momentum, specifically in relation to the collision of bodies. In this case both have different addresses, consideration that will be understood later.
By definition it is known that the conservation of the moment is given by:

Our values are given by,

As the skater 1 run in x direction, there is not component in Y direction. Then,
Skate 1:


Skate 2:


Then, if we applying the formula in X direction:
m_1v_{x1}+m_2v_{x2}=(m_1+m_2)v_{fx}
75*5.45-75*1.41=(75+75)v_{fx}
Re-arrange and solving for v_{fx}
v_{fx}=\frac{4.04}{2}
v_{fx}=2.02m/s
Now applying the formula in Y direction:




Therefore the skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Answer:
1.73 m/s²
Explanation:
Given:
Δx = 250 m
v₀ = 0 m/s
t = 17 s
Find: a
Δx = v₀ t + ½ at²
250 m = (0 m/s) (17 s) + ½ a (17 s)²
a = 1.73 m/s²
Theres: the vacuole, nucleus, rough endoplamid reticulum, smooth endoplasmic reticulum, cell memebrane, cell wall, chloroplast, mitochondria, golgi apperatus, lysosomes, and ribosomes