Answer: Not 100% sure but I think it’s C.
Hope this helps! ^^
In order to find the our own velocity with respect to land,we need to apply the theory of relative velocity.
Now consider the velocity of the ship traveling towards the north with respect to land as A.Consider our own velocity headed northwards as B.
The relative velocity is the velocity that the body A would appear to an observer on the body B and vice versa.
In this case the relative velocity would be arrived by summing up our velocity with the velocity of the ship as the object (I) is travelling in the ship.
Relative velocity = Velocity of Body A+ Velocity of Body B.
Velocity of the ship traveling towards the north with respect to land(A)= 13.0m/s. (Given)
Our own velocity headed northwards(B)= 2.8 m/s.
Relative velocity = Velocity of Body A+ Velocity of Body B.
Relative velocity= 13.0 + 2.8 = 15.8m/s.
Thus our own velocity with respect to the land is 15.8 m/s.
Answer:
<h3>Newton's 2nd law states acceleration is proportional to the net force acting on an object. The net force is the vector sum of all the forces applied to the object. ... In this case the acceleration (slowing down) of the puck is proportional to the amount of friction.</h3>
Explanation:
<h3>mark as brainliast</h3>
The answer to this question is false