1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
1 year ago
12

A 2 kg ball is dropped above the surface of Planet X. If the gravitational field strength at the surface of Planet X is 5 N/kg,

what is the ball’s weight on the surface of Planet X?
Physics
1 answer:
Trava [24]1 year ago
3 0

Given data:

* The mass of the ball is 2 kg.

* The gravitational field strength at the surface of planet X is 5 N/kg.

Solution:

The weight of the ball on the planet X is,

W=ma

where m is the mass of ball, a is the gravitational field strength,

Substituting the known values,

\begin{gathered} W=2\times5 \\ W=10\text{ N} \end{gathered}

Thus, the weight of the ball on the surface of planet X is 10 N.

You might be interested in
Which of the following has potential but not kinetic energy?
gavmur [86]

The answer would be option D "a ball sitting on a shelf." Potential energy is the amount of energy a object has while it's at rest.. (or not moving) Kinetic energy is how much energy a object is while it's moving. So in this case it's option D because a ball sitting on a shelf isn't moving therefore it has potential energy. It's not option A because thats a example of kinetic energy since how the roller coaster is moving. It's not option B because it's kinetic energy because the bike is moving. It's also not option C because it's kinetic energy because the bird is moving.


Hope this helps!

7 0
3 years ago
What is the anomalous expansivity of water
lora16 [44]

Answer:

The anomalous expansion of water is an abnormal property of water whereby it expands instead of contracting when the temperature goes from 4o C to 0o C, and it becomes less dense. The density is maximum at 4 degree centigrade and decreases below that temperature as shown in graph.

Explanation:do you want me to explain it more??

6 0
3 years ago
What profession is most likely to make use of amphoras and candelas
Monica [59]
Biologists probably
5 0
3 years ago
A 300 g ball and a 600 g ball are connected by a 40-cm-lon massless, rigid rod. The structure rotates about its center of me at
Readme [11.4K]

Answer:

 KE = 1.75 J

Explanation:

given,

mass of ball, m₁ = 300 g = 0.3 Kg

mass of ball 2, m₂ = 600 g = 0.6 Kg

length of the rod = 40 cm = 0.4 m

Angular speed = 100 rpm= 100\times \dfrac{2\pi}{60}

                         =10.47\ rad/s

now, finding the position of center of mass of the system

    r₁ + r₂ = 0.4 m.....(1)

 equating momentum about center of mass

  m₁r₁ = m₂ r₂

   0.3 x r₁ = 0.6 r₂

   r₁ = 2 r₂

Putting value in equation 1

2 r₂ + r₂ = 0.4

 r₂ = 0.4/3

 r₁ = 0.8/3

now, calculation of rotational energy

KE = \dfrac{1}{2}I_1\omega^2+\dfrac{1}{2}I_2\omega^2

KE = \dfrac{1}{2}\omega^2 (I_1 +I_2)

KE = \dfrac{1}{2}\omega^2 (m_1r_1^2 +m_2r^2_2)

KE = \dfrac{1}{2}\times 10.47^2(0.3\times (0.8/3)^2 +0.6\times (0.4/3)^2)

 KE = 1.75 J

the rotational kinetic energy is equal to 1.75 J

7 0
3 years ago
You hang a heavy ball with a mass of 10 kg from a gold wire 2.6 m long that is 1.6 mm in diameter. You measure the stretch of th
PolarNik [594]

<u>Answer:</u> The Young's modulus for the wire is 6.378\times 10^{10}N/m^2

<u>Explanation:</u>

Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.

The equation representing Young's Modulus is:

Y=\frac{F/A}{\Delta l/l}=\frac{Fl}{A\Delta l}

where,

Y = Young's Modulus

F = force exerted by the weight  = m\times g

m = mass of the ball = 10 kg

g = acceleration due to gravity = 9.81m/s^2

l = length of wire  = 2.6 m

A = area of cross section  = \pi r^2

r = radius of the wire = \frac{d}{2}=\frac{1.6mm}{2}=0.8mm=8\times 10^{-4}m      (Conversion factor:  1 m = 1000 mm)

\Delta l = change in length  = 1.99 mm = 1.99\times 10^{-3}m

Putting values in above equation, we get:

Y=\frac{10\times 9.81\times 2.6}{(3.14\times (8\times 10^{-4})^2)\times 1.99\times 10^{-3}}\\\\Y=6.378\times 10^{10}N/m^2

Hence, the Young's modulus for the wire is 6.378\times 10^{10}N/m^2

3 0
3 years ago
Other questions:
  • Calculate the momentum of of a 1,5000 kg car traveling at 6 m/s
    15·1 answer
  • I need help with this
    7·2 answers
  • Which of the following best describes a plane?
    14·1 answer
  • What does a Battery and a human have in common?
    11·1 answer
  • The coefficient of static friction between Teflon and scrambled eggs is about 0.04. What is the smallest angle from the horizont
    12·1 answer
  • A car traveling with constant speed travels 150 km in 7200s what is the speed of the car
    12·1 answer
  • The mass number of a nucleus (except Hydrogen) is:
    13·2 answers
  • A pendulum is set in motion and time. The time measured for 20 complete swings is 308.
    6·1 answer
  • Which example best demonstrates how unbalanced forces change the speed of an object's motion?
    5·1 answer
  • When choosing a protein it is best to choose one for high in saturated fats true or false​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!