1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
1 year ago
12

A 2 kg ball is dropped above the surface of Planet X. If the gravitational field strength at the surface of Planet X is 5 N/kg,

what is the ball’s weight on the surface of Planet X?
Physics
1 answer:
Trava [24]1 year ago
3 0

Given data:

* The mass of the ball is 2 kg.

* The gravitational field strength at the surface of planet X is 5 N/kg.

Solution:

The weight of the ball on the planet X is,

W=ma

where m is the mass of ball, a is the gravitational field strength,

Substituting the known values,

\begin{gathered} W=2\times5 \\ W=10\text{ N} \end{gathered}

Thus, the weight of the ball on the surface of planet X is 10 N.

You might be interested in
A 91-kg astronaut and a 1300-kg satellite are at rest relative to the space shuttle. The astronaut pushes on the satellite, givi
WARRIOR [948]

Answer:

18.2145 meters

Explanation:

Using the conservation of momentum, we have that:

m1v1 + m2v2 = m1'v1' + m2'v2'

m1 = m1' is the mass of the astronaut, m2=m2' is the mass of the satellite, v1 and v2 are the inicial speed of the astronaut and the satellite (v1 = v2 = 0), and v1' and v2' are the final speed of the astronaut and the satellite. Then we have that:

0 + 0 = 91*v1' + 1300*0.17

v1' = -1300*0.17/91 = -2.4286\ m/s

The negative sign of this speed just indicates the direction the astronaut goes, which is the opposite direction of the satellite.

If the astronaut takes 7.5 seconds to come into contact with the shuttle, their initial distance is:

distance = 2.4286 * 7.5 = 18.2145\ meters

8 0
3 years ago
TESE
Dmitry [639]

equal and opposite reaction.

5 0
3 years ago
Which of the following statements is FALSE regarding the law of conservation of energy?
Jobisdone [24]

Answer:

D

Explanation:

because it doesn't agree with the law of definite proportion

and energy can niether be created nor destroyed but can be transformed from one form to another

5 0
2 years ago
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
lyudmila [28]

Answer: Answer to the I'm Tall when I'm Young, and I'm Short when I'm Old. What am I? Riddle is a candle

Hope this helps

7 0
2 years ago
Read 2 more answers
A merry-go-round with a rotational inertia of 600 kg m2 and a radius of 3.0 m is initially at rest. A 20 kg boy approaches the m
nekit [7.7K]

Answer:

The velocity of the merry-go-round after the boy hops on the merry-go-round is 1.5 m/s

Explanation:

The rotational inertia of the merry-go-round = 600 kg·m²

The radius of the merry-go-round = 3.0 m

The mass of the boy = 20 kg

The speed with which the boy approaches the merry-go-round = 5.0 m/s

F_T \cdot r = I \cdot \alpha  = m \cdot r^2  \cdot \alpha

Where;

F_T = The tangential force

I =  The rotational inertia

m = The mass

α = The angular acceleration

r = The radius of the merry-go-round

For the merry go round, we have;

I_m \cdot \alpha_m  = I_m \cdot \dfrac{v_m}{r \cdot t}

I_m = The rotational inertia of the merry-go-round

\alpha _m = The angular acceleration of the merry-go-round

v _m = The linear velocity of the merry-go-round

t = The time of motion

For the boy, we have;

I_b \cdot \alpha_b  = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Where;

I_b = The rotational inertia of the boy

\alpha _b = The angular acceleration of the boy

v _b = The linear velocity of the boy

t = The time of motion

When the boy jumps on the merry-go-round, we have;

I_m \cdot \dfrac{v_m}{r \cdot t} = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Which gives;

v_m = \dfrac{m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t} \cdot r \cdot t}{I_m} = \dfrac{m_b \cdot r^2  \cdot v_b}{I_m}

From which we have;

v_m =  \dfrac{20 \times 3^2  \times 5}{600} =  1.5

The velocity of the merry-go-round, v_m, after the boy hops on the merry-go-round = 1.5 m/s.

5 0
2 years ago
Other questions:
  • Which one of the following accurately describes the force of gravity? A. The gravity acceleration has no effect on a body moving
    6·2 answers
  • While watching a movie a spaceship explodes and there is a loud bang and flash of light. What is wrong with this scene? Explain
    10·1 answer
  • A uniform disk has a mass of 3.7 kg and a radius of 0.40 m. The disk is mounted on frictionless bearings and is used as a turnta
    5·1 answer
  • Problem 3) Bob stands at the edge of the swimming pool holding a laser 1.5m above the ground. He shines the red laser beam onto
    12·1 answer
  • Mountain ranges that form close to a subduction zone are likely to experience 
    13·2 answers
  • Fill in the correct answers. A big wheel with twice the circumference of a small wheel will rotate with ____ the force and ___ t
    7·2 answers
  • Two cannonballs are dropped from a second-floor physics lab at height h above the ground. Ball B has four times the mass of ball
    12·1 answer
  • Which of the following best describes the prime meridian?
    13·1 answer
  • I NEED HELP ASAP! Compare the spectrum of the unknown gas collected at the bulb company
    10·1 answer
  • Please<br>help<br>me<br>with this problem​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!