<h2> The potential and kinetic energy of airplane are affected by these factors </h2>
Explanation:
When airplane rises up , it requires potential energy . This potential energy can be taken from the kinetic energy of airplane .
Thus if the speed of wind is larger , it can either oppose the motion of velocity or can favour the velocity of airplane . By which its kinetic energy is effected .
If the weight of airplane is changed , it will effect the potential energy required . Thus heavier plane requires higher potential energy for attaining the same height .
Thus these two factor has important role in the flight of airplane .
In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>
Fusion reactions happen in stars
In a surface wave (like water) the water goes up and down, but the wave travels across (parallel to) the surface.
Answer:
Tension, T = 87.63 N
Explanation:
Given that,
Mass of the object, m = 6.9 kg
The string is acting in the upward direction, a = 2.9 m/s²
Acceleration due to gravity, g = 9.8 m/s²
As the lift is accelerating upwards, it means the net force acting on it is given by :
T = m(a+g)
= 6.9 (2.9+9.8)
= 6.9(2.7)
= 87.63 N
So, the tension in the string is 87.63 N.