1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
16

The data in the table represent the height of an object over time. A 2-column table with 5 rows. The first column is labeled tim

e (seconds) with entries 0, 1, 2, 3, 4. The second column is labeled height (feet) with entries 5, 50, 70, 48, 4. Which model best represents the data? quadratic, because the height of the object increases or decreases with a multiplicative rate of change quadratic, because the height increases and then decreases exponential, because the height of the object increases or decreases with a multiplicative rate of change exponential, because the height increases and then decreases
Mathematics
2 answers:
Citrus2011 [14]3 years ago
5 0

Answer:

The answer is definitely B

liraira [26]3 years ago
3 0

Answer:

B: quadratic, because the height increases and then decreases

Step-by-step explanation:

You might be interested in
Round 75391 to the nearest ten
cluponka [151]
75390
7 is in the ten thousand place
5 is in the thousand place
3 is in the hundreds place
9 is in the tens place
1 is in the ones place
8 0
3 years ago
Read 2 more answers
10 more than twice gorans age
Rasek [7]

Answer:

2x+10

Step-by-step explanation:

x is gorans age

6 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
Help me please thanks
SVEN [57.7K]

Answer:

5/6

Step-by-step explanation:

(-6 - 4) / (3 * -4)  [substitute a and b]

-10 / -12  [multiply the values in parenthesis]

5 / 6  [simplify by dividing by the common factor 2]

6 0
3 years ago
Read 2 more answers
Find the least common denominator (LCD)11/6 and 4/9.
viva [34]

Answer: 18

Step-by-step explanation:

11/6 * 3/3 = 33/18

4/9 * 2/2 = 8/18

Hope this helps! Please give brainliest :)

5 0
3 years ago
Other questions:
  • A penny is dropped from the roof of a building 265 feet above the ground. The height h (in feet) of the penny is a function of t
    13·1 answer
  • What is the math problem for 9,288 divided by 43
    15·1 answer
  • Find the missing side
    6·2 answers
  • A) 1<br> b) -20<br> c) 20<br> d) 7
    9·1 answer
  • Subtract ​​using the number line.
    10·2 answers
  • HELP WILL GIVE BRAINLIEST!!!!!!!!
    14·2 answers
  • Tori's Burgers cooks its burgers either well done or medium. Last night the restaurant served
    15·1 answer
  • If f(x) = x and g(x) = vx, what is f(g(x) when x = -3?
    10·1 answer
  • Ashley earns $5.50 per hour babysitting. She wants to buy a CD
    11·1 answer
  • The length of a rectangle is a centimeters, and the width of this rectangle is b centimeters. Write an expression for the area o
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!