1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
3 years ago
14

A fan that is rotating at 960 rev/s is turned off. It makes 1500 revolutions before it comes to a stop. a) What was its angular

acceleration(assuming it was constant)
Physics
1 answer:
Evgesh-ka [11]3 years ago
5 0

Answer:

α = 1930.2 rad/s²

Explanation:

The angular acceleration can be found by using the third equation of motion:

2\alpha \theta=\omega_f^2-\omega_i^2

where,

α = angular acceleration = ?

θ = angular displacement = (1500 rev)(2π rad/1 rev) = 9424.78 rad

ωf = final angular speed = 0 rad/s

ωi = initial angular speed = (960 rev/s)(2π rad/1 rev) = 6031.87 rad/s

Therefore,

2\alpha(9424.78\ rad) = (0\ rad/s)^2-(6031.87\ rad/s)^2\\\\\alpha = -\frac{(6031.87\ rad/s)^2}{(2)(9424.78\ rad)}

<u>α = - 1930.2 rad/s²</u>

<u>negative sign shows deceleration</u>

You might be interested in
What is the unique geological feature found on Mercury surface?
Cloud [144]

Answer:

The surface of Mercury has landforms that indicate its crust may have contracted. They are long, sinuous cliffs called lobate scarps. These scarps appear to be the surface expression of thrust faults, where the crust is broken along an inclined plane and pushed upward.

Explanation:

I hope this helps a little bit.

3 0
3 years ago
Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
netineya [11]

Answer: m \frac{d}{dt}v_{(t)}

Explanation:

In the image  attached with this answer are shown the given options from which only one is correct.

The correct expression is:

m \frac{d}{dt}v_{(t)}

Because, if we derive velocity v_{t} with respect to time t we will have acceleration a, hence:

m \frac{d}{dt}v_{(t)}=m.a

Where m is the mass with units of kilograms (kg) and a with units of meter per square seconds \frac{m}{s}^{2}, having as a result kg\frac{m}{s}^{2}

The other expressions are incorrect, let’s prove it:

\frac{m}{2} \frac{d}{dx}{(v_{(x)})}^{2}=\frac{m}{2} 2v_{(x)}^{2-1}=mv_{(x)} This result has units of kg\frac{m}{s}

m\frac{d}{dt}a_{(t)}=ma_{(t)}^{1-1}=m This result has units of kg

m\int x_{(t)} dt= m \frac{{(x_{(t)})}^{1+1}}{1+1}+C=m\frac{{(x_{(t)})}^{2}}{2}+C This result has units of kgm^{2} and C is a constant

m\frac{d}{dt}x_{(t)}=mx_{(t)}^{1-1}=m This result has units of kg

m\frac{d}{dt}v_{(t)}=mv_{(t)}^{1-1}=m This result has units of kg

\frac{m}{2}\int {(v_{(t)})}^{2} dt= \frac{m}{2} \frac{{(v_{(t)})}^{2+1}}{2+1}+C=\frac{m}{6} {(v_{(t)})}^{3}+C This result has units of kg \frac{m^{3}}{s^{3}} and C is a constant

m\int a_{(t)} dt= \frac{m {a_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{4}} and C is a constant

\frac{m}{2} \frac{d}{dt}{(v_{(x)})}^{2}=0 because v_{(x)} is a constant in this derivation respect to t

m\int v_{(t)} dt= \frac{m {v_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{2}} and C is a constant

6 0
3 years ago
Why is there a wet climate on the windward side of a tall mountain and a dry climate on the leeward side?
Eduardwww [97]

One side of the mountain that has constant wind and rain blowing onto it, is more likely to catch what is falling than the other side leaving it dryer.

3 0
3 years ago
Read 2 more answers
When we apply the energy conversation principle to a cylinder rolling down an incline without sliding, we exclude the work done
NikAS [45]

Answer:

D. the linear velocity of the point of contact (relative to the inclined surface) is zero

Explanation:

The force of friction emerges only when there is relative velocity between two objects . In case of perfect rolling , there is no sliding so relative velocity between the surface and the point of contact is zero . In other words the velocity of point of contact becomes zero , even though , the whole body is in linear motion . It happens due  point of contact having two velocities which are equal and opposite . One of the velocity is in forward direction and the other velocity which is due to rotation is in backward direction . So net velocity of point of contact becomes zero . Due to absence of sliding , displacement due to friction  becomes zero . Hence work done by friction becomes zero.

5 0
3 years ago
ASAP! please help me MCQ. Thank you
Dmitriy789 [7]

Answer:13m

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • Calculate the quantity of heat required to melt 5kg of ice​
    12·1 answer
  • Does magnets exert a force. explain​
    5·1 answer
  • Sound waves are mechanical waves in which the particles in the medium vibrate in a direction parallel to the direction of energy
    9·1 answer
  • A single loop of current is immersed in an externally applied uniform magnetic field of 3 Tesla oriented in the positive y direc
    11·1 answer
  • Social learning theory indicates that learning occurs from _____.
    10·1 answer
  • If forces acting on an object are unbalanced, which factor may result from an unbalanced force? The net force is negative. There
    8·2 answers
  • The Earth moving round the Sun in a circular orbit is acted upon by a
    8·1 answer
  • The work done in lifting a brick of mass 2kg through a height of 5m above the ground will be
    8·1 answer
  • The problem of perception is best characterized as
    15·1 answer
  • Give two alterations in a generator to produce more electromotive force​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!