1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
3 years ago
14

A fan that is rotating at 960 rev/s is turned off. It makes 1500 revolutions before it comes to a stop. a) What was its angular

acceleration(assuming it was constant)
Physics
1 answer:
Evgesh-ka [11]3 years ago
5 0

Answer:

α = 1930.2 rad/s²

Explanation:

The angular acceleration can be found by using the third equation of motion:

2\alpha \theta=\omega_f^2-\omega_i^2

where,

α = angular acceleration = ?

θ = angular displacement = (1500 rev)(2π rad/1 rev) = 9424.78 rad

ωf = final angular speed = 0 rad/s

ωi = initial angular speed = (960 rev/s)(2π rad/1 rev) = 6031.87 rad/s

Therefore,

2\alpha(9424.78\ rad) = (0\ rad/s)^2-(6031.87\ rad/s)^2\\\\\alpha = -\frac{(6031.87\ rad/s)^2}{(2)(9424.78\ rad)}

<u>α = - 1930.2 rad/s²</u>

<u>negative sign shows deceleration</u>

You might be interested in
A guitar string has a linear density of 8.30 ✕ 10−4 kg/m and a length of 0.660 m. the tension in the string is 56.7 n. when the
Sedbober [7]
Ans: Beat Frequency = 1.97Hz

Explanation:
The fundamental frequency on a vibrating string is 

f =   \sqrt{ \frac{T}{4mL} }<span>  -- (A)</span>

<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>


Plug in the values in Equation (A)

<span>so </span>f = \sqrt{ \frac{56.7}{4*5.48*10^{-4}*0.66} }<span> = 197.97Hz </span>

<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
3 0
4 years ago
Read 2 more answers
A car is traveling south is 200 kilometers from it’s starting point after 2 hours. What is the average velocity of the car
Lesechka [4]

Answer:

100

Explanation:

take note that v=d/t (velocity is distance over(divided by) time, so in this case it would be 200 (distance) divided by 2 (time) = 100

6 0
3 years ago
8. While taking a measurement, Ajay put the 2nd mark of the scale to the edge of the line and the mark that pointed to the end o
Leni [432]

Answer:

The length of line is 78 cm or 0.78 m.

Explanation:

initial reading 2 mark

final reading 80 cm

The length of the line

= final reading - initial reading

= 80 - 2

= 78 cm

1 cm = 0.01  m

So, 78 cm = 0.78 m

4 0
3 years ago
A 115 g hockey puck sent sliding over ice is stopped in 15.1 m by the frictional force on it from the ice.
Hoochie [10]

Answer:

(a) Ff = 0.128 N

(b μk = 0.1135

Explanation:

kinematic analysis

Because the hockey puck  moves with uniformly accelerated movement we apply the following formulas:

vf=v₀+a*t Formula (1)

d= v₀t+ (1/2)*a*t² Formula (2)

Where:  

d:displacement in meters (m)  

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s

Calculation of the acceleration of the  hockey puck

We apply the Formula (1)

vf=v₀+a*t      v₀=5.8 m/s ,  vf=0

0=5.8+a*t

-5.8 = a*t

a= -5.8/t   Equation (1)

We replace a= -5.8/t in the Formula (2)

d= v₀*t+ (1/2)*a*t²   ,  d=15.1 m ,  v₀=5.8 m/s

15.1 = 5.8*t+ (1/2)*(-5.8/t)*t²  

15.1= 5.8*t-2.9*t

15.1= 2.9*t

t = 15.1 / 2.9

t= 5.2 s

We replace t= 5.2 s in the equation (1)

a= -5.8/5.2

a= -1.115 m/s²

(a) Calculation of the  frictional force (Ff)

We apply Newton's second law

∑F = m*a    Formula (3)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Look at the free body diagram of the  hockey puck in the attached graphic

∑Fx = m*a     m= 115g * 10⁻³ Kg/g = 0.115g    ,  a= -1.12 m/s²

-Ff = 0.115*(-1.115)  We multiply by (-1 ) on both sides of the equation

Ff = 0.128 N

(b) Calculation of the coefficient of friction (μk)

N: Normal Force (N)

W=m*g= 0.115*9.8= 1.127 N : hockey puck  Weight

g: acceleration due to gravity =9.8 m/s²

∑Fy = 0

N-W=0

N = W

N =  1.127 N

μk = Ff/N

μk = 0.128/1.127

μk = 0.1135

8 0
3 years ago
In what regions of the electromagnetic spectrum is the atmosphere transparent enough to allow observations from the ground?
MissTica

Answer:

Visible Light and Radio waves

Explanation:

The earth's atmosphere is transparent to a few windows in the electromagnetic spectrum. it is completely transparent to allow observation from the ground in visible light rang 380 to 740 nano meters. Also in the range of radio wave as communication are done from space to ground in the form of radio waves.

it is Partially transparent to Microwave and infrared range.

3 0
3 years ago
Other questions:
  • Which statement would be the best evidence that heat transfer through radiation has occurred and why? A) A pan gets hot on a sto
    10·2 answers
  • A mass weighing 32 pounds stretches a spring 2 feet. Determine the amplitude and period of motion if the mass is initially relea
    15·1 answer
  • Which sentence uses the correct adverb to make a comparison?
    8·2 answers
  • Give an example of a situation in which there is a force and a displacement, but the force does no work. explain why it does no
    11·2 answers
  • An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 2.00 T field with his f
    15·1 answer
  • A body when dropped into a jar ,containing kerosene and glycerine ,sinks below the kerosene level to float in glycerine as infig
    6·1 answer
  • A car travels 40 miles north in 30 minutes and then turns around and travels 20 miles south in 30 minutes. The distance travelle
    14·1 answer
  • The acceleration of an object would increase if there was an increase in:
    5·1 answer
  • Which of the following is not true about tectonic plates
    15·1 answer
  • Can someone please answer this, ill give you brainliest Would be very appreciated.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!