Answer:
A
Explanation:
Please see the attached picture for the full solution.
Since we are only concerned about the decrease in gravitational potential energy of the car, we look at the decrease in height of the car as it moves from point X to point Y, instead of the distance travelled by the car.
Answer:
The graph appears to be in error.
The actual figure appears to be a rhombus with sides of 5 and 15 with a height of 5
The work done (F * S) is the area of the rhombus
1/2 * (5 +15) * 5 = 50 J
Answer:
<u>Here are some of the songs of Beethoven's</u>:–
- Septet.
- Moonlight Sonata.
- Pathetique Sonata.
- Adelaide (Most popular).
- Eroica Symphony.
- Fifth Symphony.
- Fidelio.
- Emperor piano concerto.
Answer:
18 m
Explanation:
Given : vo = 0 m/s ; t = 3 s; a = 4 m/s^2 ; d = ? m ; average velocity = ? m/s ; fonal velocity = ? m/s
solving for the final velocity, v
v = a * t
v = 4 m/s^2 * 3 s
v = 12 m / s
Solving for the average velocity. avg v
avg v = (vo + v) / 2
avg v = (0 m / s + 12 m/s) / 2
avg v = 6 m / s
Solving for the distance traveled after 3 s
d = avg v * t
d = 6 m / s * 3 s
d = 18 meters
In the first 3s the car travels 18 meters.
Answer:
A line of symmetry is a line that separates a shape into two identical halves.
Rotational symmetry is the same thing except when you rotate the object, it has to have the exact same line of symmetry.
<u><em>Hope this helps!!!</em></u>