Answer:
For any proportional relationship, k=yx (such as a line that passes through the origin). Find the equation of the line by solving for y in the constant of proportionality equation. This equation y=kx is another representation of a proportional relationship.
Step-by-step explanation:
![\bf ~\hspace{10em}\textit{function transformations} \\\\\\ \begin{array}{llll} f(x)= A( Bx+ C)^2+ D \\\\ f(x)= A\sqrt{ Bx+ C}+ D \\\\ f(x)= A(\mathbb{R})^{ Bx+ C}+ D \end{array}\qquad \qquad \begin{array}{llll} f(x)=\cfrac{1}{A(Bx+C)}+D \\\\\\ f(x)= A sin\left( B x+ C \right)+ D \end{array} \\\\[-0.35em] ~\dotfill\\\\ \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ flips it upside-down if } A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis}](https://tex.z-dn.net/?f=%5Cbf%20~%5Chspace%7B10em%7D%5Ctextit%7Bfunction%20transformations%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20f%28x%29%3D%20A%28%20Bx%2B%20C%29%5E2%2B%20D%20%5C%5C%5C%5C%20f%28x%29%3D%20A%5Csqrt%7B%20Bx%2B%20C%7D%2B%20D%20%5C%5C%5C%5C%20f%28x%29%3D%20A%28%5Cmathbb%7BR%7D%29%5E%7B%20Bx%2B%20C%7D%2B%20D%20%5Cend%7Barray%7D%5Cqquad%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20f%28x%29%3D%5Ccfrac%7B1%7D%7BA%28Bx%2BC%29%7D%2BD%20%5C%5C%5C%5C%5C%5C%20f%28x%29%3D%20A%20sin%5Cleft%28%20B%20x%2B%20C%20%5Cright%29%2B%20D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbullet%20%5Ctextit%7B%20stretches%20or%20shrinks%20horizontally%20by%20%7D%20A%5Ccdot%20B%5C%5C%5C%5C%20%5Cbullet%20%5Ctextit%7B%20flips%20it%20upside-down%20if%20%7D%20A%5Ctextit%7B%20is%20negative%7D%5C%5C%20~~~~~~%5Ctextit%7Breflection%20over%20the%20x-axis%7D)

with that template in mind, let's see
down by 5 units, D = -5
to the left by 4 units, C = +4

Answer:
Step-by-step explanation:
let wind velocity=x
speed of plane=y
(x+y)*4=808
x+y=808/4=202 ...(1)
(y-x)*4=488
y-x=122 ...(2)
add (1) and (2)
2y=202+122=324
y=324/2=162
from (1)
x+162=202
x=202-162=40
wind velocity=40 m/hr
speed of plane=162 m/hr
ANSWER

EXPLANATION
The general term for the sequence is

To find the 55th term, we have to substitute

in to the general term and simplify.
This implies that,




Therefore the 55th term is 161.