The number 6.022 × 1023 indicating the number of atoms or molecules in a mole of any substance
Answer:
The answer is
<h2>59.6 g </h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
Density of aluminum = 2.00 g/mL
volume = 29.8 mL
The mass is
mass = 2 × 29.8
We have the final answer as
<h3>59.6 g</h3>
Hope this helps you
<span>Colligative properties are properties of solutions that depend on the number of molecules [or ions] in a given volume of solvent and not on the properties (e.g. size or mass) of the compound. Colligative properties include: lowering of vapor pressure; elevation of boiling point; depression of freezing point and osmotic pressure.</span>
Answer:
0.8 mL of protein solution, 9.2 mL of water
Explanation:
The dilution equation can be used to relate the concentration C₁ and volume V₁ of the stock/undiluted solution to the concentration C₂ and volume V₂ of the diluted solution:
C₁V₁ = C₂V₂
We would like to calculate the value for V₁, the volume of the inital solution that we need to dilute to make the required solution.
V₁ = (C₂V₂) / C₁ = (2mg/mL x 10mL) / (25 mg/mL) = 0.8 mL
Thus, a volume of 0.8 mL of protein solution should be diluted with enough water to bring the total volume to 10 mL. The amount of water needed is:
(10 mL - 0.8 mL) = 9.2 mL
Answer: The correct option is B.
Explanation: To describe the motion of an object, we use the equations of motion.
![v=u+at](https://tex.z-dn.net/?f=v%3Du%2Bat)
![s=ut+\frac{1}{2}at^2](https://tex.z-dn.net/?f=s%3Dut%2B%5Cfrac%7B1%7D%7B2%7Dat%5E2)
![2as=v^2-u^2](https://tex.z-dn.net/?f=2as%3Dv%5E2-u%5E2)
From the above equations, we require position, speed and direction through which we an calculate the displacement, velocity and acceleration.
To calculate the complete motion of an object, we require all the three factors.
Hence, the correct option is B.