Answer:
pH of the H⁺(aq) is 0
Explanation:
It is possible to know the concentration of a HCl(aq) solution by titration with a solution of NaOH(aq) with known concentration. The reaction is:
HCl(aq) + NaOH(aq) → H₂O(l) + NaCl(aq)
The added moles of NaOH are equal to moles of HCl and as you know volume of HCl added you will obtain concentration of HCl.
Now, a solution of H⁺(aq) with a concentration 10 times greater than original NaOH(aq) solution -0.100M-, has a concentration of 1.00M H⁺(aq), the pH of this solution is:
pH = -log (1.00M H⁺(aq) = 0
That means <em>pH of the H⁺(aq) is 0</em>
Answer:
Hydrogen gas
Explanation:
During electrolysis of acidified water, H+ ions are reduced to H2 gas at the negative carbon electrode (cathode) and hence hydrogen gas is liberated at cathode.
105.50 grams of total object biomass or matter mixed together which is technically chemistry.
Answer:
Final concentration of C at the end of the interval of 3s if its initial concentration was 3.0 M, is 3.06 M and if the initial concentration was 3.960 M, the concentration at the end of the interval is 4.02 M
Explanation:
4A + 3B ------> C + 2D
In the 3s interval, the rate of change of the reactant A is given as -0.08 M/s
The amount of A that has reacted at the end of 3 seconds will be
0.08 × 3 = 0.24 M
Assuming the volume of reacting vessel is constant, we can use number of moles and concentration in mol/L interchangeably in the stoichiometric balance.
From the chemical reaction,
4 moles of A gives 1 mole of C
0.24 M of reacted A will form (0.24 × 1)/4 M of C
Amount of C formed at the end of the 3s interval = 0.06 M
If the initial concentration of C was 3 M, the new concentration of C would be (3 + 0.06) = 3.06 M.
If the initial concentration of C was 3.96 M, the new concentration of C would be (3.96 + 0.06) = 4.02 M
Answer:
1s2 2s2 2p6
Explanation:
ththe noble gas config. of neon