...a metal atom will *lose* electrons to form a *positive* cation and a nonmetal atom will *accept* electrons to form an *negative* anion.
The hydrogen ion concentration [H3O+] in an egg white containing 6.3 × 10-⁷M of [OH-] is 1.5 × 10-⁸M.
<h3>How to calculate [H3O+]?</h3>
The hydrogen ion concentration of a solution can be calculated as follows:
pOH = - log [OH-]
pOH = - log [6.3 × 10-⁷M]
pOH = - [-6.2]
pOH = 6.2
Since pOH + pH = 14
pH = 14 - 6.2
pH = 7.8
pH = - log [H3O+]
7.8 = - log [H3O+]
[H3O+] = 10-⁷:⁸
[H3O+] = 1.5 × 10-⁸M
Therefore, the hydrogen ion concentration [H3O+] in an egg white containing 6.3 × 10-⁷M of [OH-] is 1.5 × 10-⁸M.
Learn more about hydrogen ion concentration at: brainly.com/question/15082545
An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between atoms. Hope this helps!!!
Answer:
141g of CCl₄
Explanation:
First, we have to write the balanced equation.
CCl₄(g) + 2 HF(g) ⇄ CF₂Cl₂(g) + 2 HCl(g)
We can calculate how many moles of CF₂Cl₂ using the ideal gas equation.
V = 14.9 dm³ = 14.9 L
T = 21°C + 273.15 = 294.15 K
P = 1.48 atm
R = 0.08206 atm.L/mol.K

We can use proportions to find the mass of CCl₄ required to obtain 0.914 moles of CF₂Cl₂. According to the balanced equation, 1 mol of CF₂Cl₂ is produced when 1 mol of CCl₄ reacts. And the molar mass of CCl₄ is 154 g/mol.
