The question is as follows: What is the% m / m of a solution in which 22 g of solute are dissolved in 44 g of solvent?
Answer: The% m/m of a solution in which 22 g of solute are dissolved in 44 g of solvent is 50%.
Explanation:
Given: Mass of solute = 22 g
Mass of solvent = 44 g
The percentage m/m is calculated using the following formula.

Substitute the values into above formula as follows.

Thus, we can conclude that the% m/m of a solution in which 22 g of solute are dissolved in 44 g of solvent is 50%.
The temperature of a certain substance can be seen as the average speed of the atoms or molecules in that substance. In the liquid state of a substance the forces between the atoms or molecules are strong enough to keep them together, however with enough freedom to move, unlike in the solid state. If we would have a closer look at the surface of a liquid from sideways, we would see water molecules jumping out of the water and reentering it again. The lower the water temperature would be the lesser the amount of water molecules leaving the liquid phase would be. If water would be heated up and the temperature will reach 100 degrees C at normal atmospheric pressure, more water molecules would leave the water than reentering. Boiling has started. The temperature of the water remains at 100 degrees C, if the heating continues as the average speed of molecules will not increase, only the rate of molecules leaving the water will increase, until all the water in liquid state has been vapourized. The amount of heat needed to vapourize liquid water is called latent heat. Latent heat is a very important driving factor in the atmosphere and thus the weather.
Harmonic melody and something else hold on...checking
DO NOT CLICK THE LINK THE OTHER PERSON COMMENTED PLS
Answer:
The correct option is b. an amino-terminal signal
Explanation:
A polypeptide that will eventually fold to become an ion channel protein, it means a kind of integral membrane protein, has an amino terminal signal that indicates its delivery to endoplasmic reticulum (ER) and then to the membrane. This type of signal usually consist in a nucleus of 6 to 12 aminoacids and one or more basic aminoacids. Once the polypeptide enters the ER, this signal is removed.