Answer:
An object responds to a force by tending to move in the direction of that force
Explanation:
The inertia of a body can be defined with the help of Newton's second law
F = m a
Where F is the applied force, a is the acceleration of the body and m is the mass
the force and the acceleration are vectors that point in the same direction and m is a scalar constant that relates the two vectors, this scalar constant is called masses and it measures the resistance of the bodies to the change of motion.
From the previous statement we see that the statement that best describes inertia is:
An object responds to force by tending to move in the direction of the force.
Answer:

Explanation:
<u>Given Data:</u>
Length = l = 820 mm = 0.82 m
Acceleration due to gravity = g = 9.8 ms⁻²
<u>Required:</u>
Frequency = f = ?
<u>Formula:</u>

<u>Solution:</u>
![\displaystyle f =\frac{1}{2 \pi} \sqrt{\frac{g}{l} } \\\\Put\ the\ givens\\\\f=\frac{1}{2 \pi} \sqrt{\frac{9.8}{0.82} }\\\\ f = 0.159 \times \sqrt{11.95} \\\\f=0.159 \times 3.457\\\\f=0.55 \ Hz\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%20%3D%5Cfrac%7B1%7D%7B2%20%5Cpi%7D%20%5Csqrt%7B%5Cfrac%7Bg%7D%7Bl%7D%20%7D%20%5C%5C%5C%5CPut%5C%20the%5C%20givens%5C%5C%5C%5Cf%3D%5Cfrac%7B1%7D%7B2%20%5Cpi%7D%20%5Csqrt%7B%5Cfrac%7B9.8%7D%7B0.82%7D%20%7D%5C%5C%5C%5C%20f%20%3D%200.159%20%5Ctimes%20%5Csqrt%7B11.95%7D%20%5C%5C%5C%5Cf%3D0.159%20%5Ctimes%203.457%5C%5C%5C%5Cf%3D0.55%20%5C%20Hz%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
1.71 km
Explanation:
Convert 30 minutes to seconds:
30 min × (60 s / min) = 1800 s
Find the displacement:
0.95 m/s × 1800 s = 1710 m
Convert to kilometers:
1710 m × (1 km / 1000 m) = 1.71 km
<h2>
The balloon is moving when it is halfway down the building at 20.78 m/s.</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 0.5 x 44 = 22 m
Substituting
v² = u² + 2as
v² = 0² + 2 x 9.81 x 22
v² = 431.64
v = 20.78 m/s
Velocity at 22 m = 20.78 m/s
The balloon is moving when it is halfway down the building at 20.78 m/s.
Answer:
"Scientist use radioactive decay to measure the age of a rock or fossil."
Explanation:
"To establish the age of a rock or a fossil, researchers use some type of clock to determine the date it was formed. Geologists commonly use radiometric dating methods, based on the natural radioactive decay of certain elements such as potassium and carbon, as reliable clocks to date ancient events."