Answer : The fraction of carbonic acid present in the blood is 5.95%
Explanation :
The mixture consists of carbonic acid ( H₂CO₃) and bicarbonate ion ( HCO₃⁻). This represents a mixture of weak acid and its conjugate which is a buffer.
The pH of a buffer is calculated using Henderson equation which is given below.
![pH = pKa + log \frac{[Base]}{[Acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%20%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D)
We have been given,
pH = 7.5
pKa of carbonic acid = 6.3
Let us plug in the values in Henderson equation to find the ratio Base/Acid.
![7.5 = 6.3 + log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=7.5%20%3D%206.3%20%2B%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
![1.2 = log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=1.2%20%3D%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
![\frac{[Base]}{[Acid]} = 10^{1.2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%20%3D%2010%5E%7B1.2%7D)
![\frac{[Base]}{[Acid]} = 15.8](https://tex.z-dn.net/?f=%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%20%3D%2015.8)
![[Base] = 15.8 \times [Acid]](https://tex.z-dn.net/?f=%5BBase%5D%20%3D%2015.8%20%5Ctimes%20%5BAcid%5D)
The total of mole fraction of acid and base is 1. Therefore we have,
![[Acid] + [Base] = 1](https://tex.z-dn.net/?f=%5BAcid%5D%20%2B%20%5BBase%5D%20%3D%201)
But Base = 15.8 x [Acid]. Let us plug in this value in above equation.
![[Acid] + 15.8 \times [Acid] = 1](https://tex.z-dn.net/?f=%5BAcid%5D%20%2B%2015.8%20%5Ctimes%20%5BAcid%5D%20%3D%201)
![16.8 [Acid] = 1](https://tex.z-dn.net/?f=16.8%20%5BAcid%5D%20%3D%201)
![[Acid] = \frac{1}{16.8}](https://tex.z-dn.net/?f=%5BAcid%5D%20%3D%20%5Cfrac%7B1%7D%7B16.8%7D)
![[Acid] = 0.0595](https://tex.z-dn.net/?f=%5BAcid%5D%20%3D%200.0595)
[Acid] = 0.0595 x 100 = 5.95 %
The fraction of carbonic acid present in the blood is 5.95%
Answer:
they're close to filling their outer shell, fulfilling the octet rule
Explanation:
7 valance electrons and a atomic number of 9
Ca=40
C=12
O=16
1 mole of CaCO3 has 100 grams
So 50 grams is 0.5 mole
Our reaction balanced equation at equilibrium N2(g) + 3 H2(g) ↔ 2 NH3(g)
and we have the Kp value at equilibrium = 4.51 X 10^-5
A) 98 atm NH3, 45 atm N2, 55 atm H2
when Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
= 98^2 / (45 * 55^3) = 1.28 x 10^-3
by comparing the Kp by the Kp at equilibrium(the given value) So,
Kp > Kp equ So the mixture is not equilibrium,
it will shift leftward (to decrease its value) towards the reactants to achieve equilibrium.
B) 57 atm NH3, 143 atm N2, no H2
∴ Kp = [P(NH3)]^2 / [P(N2)]
= 57^2 / 143 = 22.7
∴Kp> Kp equ (the given value)
∴it will shift leftward (to decrease its value) towards reactants to achieve equilibrium.
c) 13 atm NH3, 27 atm N2, 82 atm H2
∴Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
= 13^2 / (27* 82^3) = 1.14 X 10^-5
∴ Kp< Kp equ (the given value)
∴it will shift rightward (to increase its value) towards porducts to achieve equilibrium.