Hello!
First you need to calculate q
<span>delta U is change in internal energy </span>
<span>delta U = q + w </span>
<span>q is heat and w work done </span>
<span>here work was done by the system means energy leaving the system so w is negative </span>
<span>delta U = q + w </span>
<span>q = delta U - w = 6865 J - (-346 J) = 7211 J = 7.211 KJ </span>
<span>q = m x c x delta T </span>
<span>7211 J = 80.0 g x c x (225-25) °C </span>
<span>c = 0.451 J /g °C
</span>
Hope this Helps! Have A Wonderful Day! :)
Answer:
Acid are those substances which release H + ions when dissolved in water.
Get that hundooo!
According to Avogadro's Law, same volume of any gas at standard temperature and pressure will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = ?
V = Volume = 16.8 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 16.8 L) ÷ 22.4 L
= 0.75 moles
Result:
16.8 L of Nitrogen gas will contain 0.75 moles at standard temperature and pressure.
The anode is the electrode where the oxidation occurs.
Cathode is the electrode where the reducction occurs.
Equations:
Mn(2+) + 2e- ---> Mn(s) Eo = - 1.18 V
2Fe(3+) + 2e- ----> 2 Fe(2+) 2Eo = + 1.54 V
The electrons flow from the electrode with the lower Eo to the electrode with the higher Eo yielding to a positive voltage.
Eo = 1.54 V - (- 1.18) = 1.54 + 1.18 = 2.72
Answer: 2.72 V
<span>Electrons in a nitrogen-phosphorus covalent bond are not shared equally because nitrogen and phosphorus do not have the same electronegativity. The atoms spend more time around the most electronegative atom nitrogen.</span>