1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Simora [160]
2 years ago
15

The price paid for a $250 table after a 30% discount is applied

Mathematics
2 answers:
Vladimir [108]2 years ago
8 0

Answer:

GAFD

Step-by-step explanation:

250*0.3 is 75

250-75 175

so D

GAFD

Hope this helps plz hit the crown :D

taurus [48]2 years ago
3 0

Answer:

GEFD

Step-by-step explanation:

You might be interested in
What are the solutions to the quadratic equation (5y + 6)2 = 24?
Ivenika [448]

Answer:

y = \frac{2\sqrt{6} }{5} -\frac{6}{5}  OR  y = \frac{-2\sqrt{6} }{5} -\frac{6}{5}

Step-by-step explanation:

Our quadratic equation is: (5y + 6)² = 24.

The first step is to square root both sides:

5y + 6 = ±√24 = ±2√6

Now subtract 6 from both sides:

5y = ±2√6 - 6

Finally divide by 5 from both sides:

y = \frac{2\sqrt{6} }{5} -\frac{6}{5}  OR  y = \frac{-2\sqrt{6} }{5} -\frac{6}{5}

And, those are the solutions to the equation.

7 0
3 years ago
Read 2 more answers
f(x) = 3 cos(x) 0 ≤ x ≤ 3π/4 evaluate the Riemann sum with n = 6, taking the sample points to be left endpoints. (Round your ans
Kruka [31]

Answer:

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

Step-by-step explanation:

We want to find the Riemann sum for \int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx with n = 6, using left endpoints.

The Left Riemann Sum uses the left endpoints of a sub-interval:

\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)

where \Delta{x}=\frac{b-a}{n}.

Step 1: Find \Delta{x}

We have that a=0, b=\frac{3\pi }{4}, n=6

Therefore, \Delta{x}=\frac{\frac{3 \pi}{4}-0}{6}=\frac{\pi}{8}

Step 2: Divide the interval \left[0,\frac{3 \pi}{4}\right] into n = 6 sub-intervals of length \Delta{x}=\frac{\pi}{8}

a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b

Step 3: Evaluate the function at the left endpoints

f\left(x_{0}\right)=f(a)=f\left(0\right)=3=3

f\left(x_{1}\right)=f\left(\frac{\pi}{8}\right)=3 \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}=2.77163859753386

f\left(x_{2}\right)=f\left(\frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2}=2.12132034355964

f\left(x_{3}\right)=f\left(\frac{3 \pi}{8}\right)=3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=1.14805029709527

f\left(x_{4}\right)=f\left(\frac{\pi}{2}\right)=0=0

f\left(x_{5}\right)=f\left(\frac{5 \pi}{8}\right)=- 3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=-1.14805029709527

Step 4: Apply the Left Riemann Sum formula

\frac{\pi}{8}(3+2.77163859753386+2.12132034355964+1.14805029709527+0-1.14805029709527)=3.09955772805315

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

5 0
2 years ago
A line passes through the point (-10,8) and has a slope of 1/2.
timofeeve [1]

Answer:

the answer is y=1/2x+13

6 0
3 years ago
Help is needed! Desperate
Bogdan [553]
Sorry I don't know that question.
5 0
3 years ago
Read 2 more answers
Exercise 30 please , show work
ArbitrLikvidat [17]
-8(2a-3b)-5(6b-4a)=\\=-8 \times 2a -8 \times (-3b)-5 \times 6b-5 \times (-4a)= \\
=-16a+24b-30b+20a= \\
=20a-16a+24b-30b= \\
=(20-16)a+(24-30)b= \\
=4a-6b
3 0
3 years ago
Read 2 more answers
Other questions:
  • Is 25/1000 grater than or less than 0.205
    8·2 answers
  • What is the greatest common factor of 48 and 64
    8·1 answer
  • How do I show variance in an equation for example if lets say the margin of error is .3 how do I express that in an expression?
    8·1 answer
  • Helppppp<br> Solve for x.<br> X= [?]<br><br> 5х – 5/2x + 10
    6·2 answers
  • What is √117 simplified
    8·2 answers
  • HAVE A FREE 100 POINTS! PASS ON THE FUN AND KINDNESS SOMEDAY!
    5·2 answers
  • I need help plzzzzzz​
    9·1 answer
  • 10. Un átomo de potasio tiene 19 protones en el núcleo y 20 neutrones. A partir de estos datos, a) ¿Cuál será su número atómico?
    10·1 answer
  • I have 10 books. If I am going to arrange them on a shelf by subject, how many ways can I do that if 5 are English, 3 are math,
    12·1 answer
  • 11 = 1 + 3r + 2r<br><br> I really need help with this!!
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!