Answer:
calcium ca
Explanation:
We can see here that the only element that is on the same group (column) as Ba (Barium) is Calcium (Ca).
Answer:
[C₆H₅COO⁻][H₃O⁺]/[C₆H₅COOH] = Ka
Explanation:
The reaction of dissociation of the benzoic acid in water is given by the following equation:
C₆H₅-COOH + H₂O ⇄ C₆H₅-COO⁻ + H₃O⁺ (1)
The dissociation constant of an acid is the measure of the strength of an acid:
HA ⇄ A⁻ + H⁺ (2)
(3)
<em>Where the dissociation constant of the acid (Ka) is equal to the ratio of the concentration of the dissociated forms of the acid, [A⁻][H⁺], and the concentration of the acid, [HA]. </em>
So, starting from the equations (2) and (3), the constant equation for the dissociation reaction of benzoic acid in water, of the equation (1), is:
![K_{a} = \frac{[C_{6}H_{5}COO^{-}][H_{3}O^{+}]}{[C_{6}H_{5}COOH]}](https://tex.z-dn.net/?f=%20K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BC_%7B6%7DH_%7B5%7DCOO%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BC_%7B6%7DH_%7B5%7DCOOH%5D%7D%20)
I hope it helps you!
<span>The atomic weight of silver is 107.8682</span>
Solid- particles are packed tightly together so they don’t move much
Liquid- particles are still close together but move freely
Gas- particles are neither close together nor fixed in place
The total pressure = 1.402 atm
<u><em>calculation</em></u>
Total pressure = partial pressure of gas A + partial pressure of gas B + partial pressure of third gas
partial pressure of gas A= 0.205 atm
Partial pressure of gas B =0.658 atm
partial pressure for third gas is calculated using ideal gas equation
that is PV=nRT where,
p(pressure)=? atm
V(volume) = 8.65 L
n(moles)= 0.200 moles
R(gas constant)=0.0821 L.atm/mol.k
T(temperature) = 11°c into kelvin =11+273 =284 k
make p the subject of the formula by diving both side by V
p =nRT/v
p = [(0.200 moles x 0.0821 L.atm/mol.K x 284 K)/8.65L)] =0.539 atm
Total pressure is therefore = 0.205 atm +0.658 atm +0.539 atm
=1.402 atm