The partial stress of H2 is 737.47 mmHg Let's observe the Ideal Gas Law to find out the whole mols.
We count on that the closed vessel has 1L of volume
- P.V=n.R.T
- We must convert mmHg to atm. 760 mmHg.
- 1 atm
- 755 mmHg (755/760) = 0.993 atm
- 0.993 m.1L=n.0.082 L.atm/mol.K .
- 293 K(0.993 atm 1.1L)/(0.082mol.K /L.atm).
- 293K = n
- 0.0413mols = n
These are the whole moles. Now we are able to know the moles of water vapor, to discover the molar fraction of it.
- P.V=n.R.T
- 760 mmHg. 1 atm
- 17.5 mmHg (17.5 mmHg / 760 mmHg)=0.0230 atm
- 0.0230 m.1L=n.0.082 L.atm/mol.K.293 K(0.0230atm.1L)/(0.082mol.K/L.atm .293K)=n 9.58 × 10 ^ 4 mols = n.
- Molar fraction = mols )f gas/general mols.
- Molar fraction water vapor =9.58×10^ -four mols / 0.0413 mols
- Sum of molar fraction =1
- 1 - 9.58 × 10 ^ 4 × mols / 0.0413 ×mols = molar fraction H2
- 0.9767 = molar fraction H2
- H2 pressure / Total pressure =molar fraction H2
- H2 pressure / 55mmHg = =0.9767 0.9767 = h2 pressure =755 mmHg.
- 737,47 mmHg.
<h3>What is a mole fraction?</h3>
Mole fraction is a unit of concentration, described to be identical to the variety of moles of an issue divided through the whole variety of moles of a solution. Because it's miles a ratio, mole fraction is a unitless expression.
Thus it is clear that the partial pressure of H2 is 737,47 mmHg.
To learn more about partial pressure refer to the link :
brainly.com/question/19813237
<h3 />
Answer:
a) Unsaturated
b) Supersaturated
c) Unsaturated
Explanation:
A saturated solution contains the <u>maximum amount of a solute that will dissolve in a given solvent at a specific temperature</u>.
An unsaturated solution contains <u>less solute than it has the capacity to dissolve. </u>
A supersaturated solution, <u>contains more solute than is present in a saturated solution</u>. Supersaturated solutions are not very stable. In time, some of the solute will come out of a supersaturated solution as crystals.
According to these definitions and considering that the solubility of KCl in 100 mL of H₂O at <u>20 °C is 34 g</u>, and at <u>50 °C is 43 g</u> we can label the solutions:
a) 30 g in 100 mL of H₂O at 20 °C ⇒ unsaturated
b) 65 g in 100 mL of H₂O at 50 °C ⇒ supersaturated
c) 42 g in 100 mL of H₂O at 50 °C and slowly cooling to 20 °C to give a clear solution <u>with no precipitate</u> ⇒ unsaturated (if it were saturated it would have had precipitate)
One may know how close the molecules within the substances are packed together. Hot substances have molecules that are farther apart, cold substances have molecules that are more compact/closer together.
Below are the choices:
a)0.2168 atm
<span>b)4.613 atm </span>
<span>c)34.60 atm </span>
<span>d467.4 atm
</span>
1 atm = 760mmHg : Therefore:
<span>3,506mmHg = 3,506/760 = 4.613 atm
</span>B is correct answer.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.