Without counting wind resistance, They will both reach the ground at the same time. If we apply the concept of kinematics, such as the equation vf^2=vi^2 + 2ad. This equation doesn't count how big or how heavy the mass is, it only focuses on how fast where they in the start and how far are both of them from the ground. So if they both have the same distance and same initial veloctity, then they will reach the ground at the same time.
For example, Try dropping a pen and a paper(Vertically) at the same height, you'll see they'll reach the ground at the same time.
If you count wind resistance, the heavier ball will hit the ground faster, because the air molecules will resist the lighter ball compared to the heavier ball.
15.49 should be the answer if that is 12 watt battery.
In reality we don't see the galaxy we see it's reflection .. the light hits or got emitted by the star travel all the way long to hit our eyes .. we see their reflection . everything around you that you see is it's reflection
Explanation:
The acceleration g varies by about 1/2 of 1 percent with position on Earth's surface, from about 9.78 metres per second per second at the Equator to approximately 9.83 metres per second per second at the poles.