Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Answer: A satellite with a mass of 110 kg and a kinetic energy of 3.08×10^9 J must be moving at a speed of 7483 m/s.
Explanation: To find the answer we need to know about the kinetic energy of a body.
<h3>
How to solve the problem the equation of kinetic energy?</h3>
- We have the expression for kinetic energy of a body as,


- We have to find the speed of the satellite,

Thus, we can conclude that, the velocity of the satellite will be 7438m/s.
Learn more about Kinetic energy here:
brainly.com/question/28105739
#SPJ4
Answer
the one resister will change because how fast the curcit is going because th rate will change f
Explanation:
Answer:
θ = 45º
Explanation:
The light that falls on the second polarized is polarized, therefore it is governed by the law of Maluz
I = I₀ cos² θ
in the problem they ask us
I = ½ I₀
let's look for the angles
½ I₀ = I₀ cos² θ
cos θ = √ ½ = 0.707
θ = cos 0.707
θ = 45º