Answer:
Total 3 holes are available for conduction of current at 300K.
Explanation:
In order to develop a semiconductor, two type of impurities can be added as given below:
- N-type Impurities: Pentavalent impurities e.g. Phosphorous, Arsenic are added to have an additional electron in the structure. Thus a pentavalent impurity creates 1 additional electron.
- P-type Impurities: Trivalent impurities e.g. Boron, Aluminium are added to have a positive "hole" in the structure. Thus a trivalent impurity creates 1 hole.
Now for estimation of extra electrons in the impured structure is as

Now for estimation of "holes" in the impured structure is as

Now when the free electrons and "holes" are available in the structure ,the "holes" will be filled by the free electrons therefore

So total 3 "holes" are available for conduction of current at 300K.
Answer:
The dart with the small mass will travel the farthest distance.
Explanation:
Acceleration is proportional to force times mass, and inertia is proportional to mass. Inertia is the reluctance of a moving body to stop, and a stationary body to start moving (inertia increses with mass). Assuming they both have the same aerodynamic design, and that they are both launched with the same force applied for the same time duration, the dart with less small mass will accelerate faster than the big mass dart. From this we can see that the small dart will have covered a longer distance before the effect of the force stops, when compared to the more massive dart.
Answer:
Yes.
Explanation:
Reactors use uranium for nuclear fuel. The uranium is processed into small ceramic pellets and stacked together onto sealed metal tubes called fuel rods. The heat created by fission turns the water into steam.
Work = force × distance
= 35 N × 200 m
= 7000 J