1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mamont248 [21]
3 years ago
10

A man throws a ball straight up to his friend on a balcony who catches it at its highest point. The ball was thrown with an init

ial velocity of 17.9 m/s2. What height does the ball reach?
Physics
1 answer:
Ede4ka [16]3 years ago
3 0

Answer:

The maximum height reached by the ball is 16.35 m.

Explanation:

Given;

initial velocity of the ball, u = 17.9 m/s

the final velocity of the ball at the maximum height, v = 0

The maximum height reached by the ball is given by;

v² = u² + 2gh

During upward motion, gravity is negative

v² = u² + 2(-g)h

v² = u² -  2gh

0 = u² -  2gh

2gh = u²

h = u² / 2g

h = (17.9)² / (2 x 9.8)

h = 16.35 m

Ttherefore, the maximum height reached by the ball is 16.35 m.

You might be interested in
Plss s ss s s s s s s s s
Crazy boy [7]

Answer:

i font know ewan madaling sabihin yan

8 0
3 years ago
Read 2 more answers
How many joules of heat would be required to heat 0.5 kg of aluminum by 2 kelvin
melisa1 [442]
0.902 joules of energy
4 0
3 years ago
If he leaves the ramp with a speed of 35.0 m/s and has a speed of 33.0 m/s at the top of his trajectory, determine his maximum h
nadezda [96]

Answer:

H = 6.93 m

Explanation:

given data

velocity v = 35 m/s

horizontal component Vx = 33 m/s

solution

we get here maximum height so first we get vertical component here that is express as

Vy = \sqrt{v^2- Vx^2}        .........................1

put here value

Vy = \sqrt{35^2- 33^2}

Vy = 11.66 m/s

and

now we get height

H = \frac{Vy^2}{2g}        .............................2

put here value

H = \frac{11.66^2}{2\times 9.8}

H = 6.93 m

7 0
3 years ago
A person who weighs 800N on the earth's surface will weigh 200N at what height above the earth
Marina86 [1]

Answer: 6,400 km

Explanation:

The weight of a person is given by:

W=mg

where m is the mass of the person and g is the acceleration due to gravity. While the mass does not depend on the height above the surface, the value of g does, following the formula:

g=\frac{GM}{r^2}

where

G is the gravitational constant

M is the Earth's mass

r is the distance of the person from the Earth's center


The problem says that the person weighs 800 N at the Earth's surface, so when r=R (Earth's radius):

800 N= W=mg=m \frac{GM}{R^2} (1)

Now we want to find the height h above the surface at which the weight of the man is 200 N:

200 N = W' = mg' = m \frac{GM}{(R+h)^2} (2)

If we divide eq.(1) by eq.(2), we get

\frac{800 N}{200 N}=\frac{W}{W'}=\frac{(R+h)^2}{R^2}

4=\frac{(R+h)^2}{R^2}

By solving the equation, we find:

4R^2 = (R+h)^2=R^2+2Rh+h^2\\h^2 +2Rh-3R^2 =0

which has two solutions:

h=-3R --> negative solution, we can ignore it

h=R --> this is our solution

Since the Earth's radius is R=6.4\cdot 10^6 m, the person should be at h=R=6.4\cdot 10^6 m=6400 km above Earth's surface.

5 0
4 years ago
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and
nikitadnepr [17]

Complete question:

The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.

Answer:

The exit velocity is 629.41 m/s

Explanation:

Given;

initial temperature, T₁ = 1200K

initial pressure, P₁ = 150 kPa

final pressure, P₂ = 80 kPa

specific heat at 300 K, Cp = 1004 J/kgK

k = 1.4

Calculate final temperature;

T_2 = T_1(\frac{P_2}{P_1})^{\frac{k-1 }{k}

k = 1.4

T_2 = T_1(\frac{P_2}{P_1})^{\frac{k-1 }{k}}\\\\T_2 = 1200(\frac{80}{150})^{\frac{1.4-1 }{1.4}}\\\\T_2 = 1002.714K

Work done is given as;

W = \frac{1}{2} *m*(v_i^2 - v_e^2)

inlet velocity is negligible;

v_e = \sqrt{\frac{2W}{m} } = \sqrt{2*C_p(T_1-T_2)} \\\\v_e = \sqrt{2*1004(1200-1002.714)}\\\\v_e = \sqrt{396150.288} \\\\v_e = 629.41  \ m/s

Therefore, the exit velocity is 629.41 m/s

6 0
3 years ago
Other questions:
  • A 430 g soccer ball lying on the ground is kicked and flies off at 25 m/s. If the duration of the impact was .01 s, what was the
    6·1 answer
  • A bird flies 3.6 km due west and then 1.8 km due north. Another bird flies 1.8 km due west and 3.6 km due north. What is the ang
    13·1 answer
  • Explain how this happens?
    7·1 answer
  • You push a refrigerator with a force of 100 N. If you move the refrigerator a distance of 5 m while you are pushing, how much wo
    10·1 answer
  • How does radiation differ from conduction?
    5·1 answer
  • A cog system on the beginning segment of a roller coaster needs to get 29 occupied cars up a 120-m vertical rise over a time int
    14·1 answer
  • An airliner flys 950 miles from S.B. to Denver at 500 mph. How long does it take to fly to
    5·1 answer
  • 21/33
    10·1 answer
  • Which represents the order of the forces from weakest to strongest.
    13·1 answer
  • If it were possible to move a star towards the earth then its apparent magnitude number would ______ while its absolute magnitud
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!