Answer:
equals
Explanation:
<h3>it means that forward reaction equals to reverse reaction</h3>
Density is a property of the substances that is obtained by dividing its mass by the volume. For a rectangular solid, the volume may be solved by the following equation,
V = L x W x H
Substituting the given values for the dimension,
V = (2.30 cm) x (4.01 cm) x (1.82 cm) = 16.78786 cm³
Calculating for the density,
Density = mass / volume
Density = 25.71 cm / <span>16.78786 cm³ = 1.53 grams per cm</span>³
Thus, the density of the given solid is approximately 1.53 grams per cm³.
The relationship between energy of a single photon and its wavelength can be determined using the formula E=hc/lambda where E is energy, h is Planck's constant, c is the speed of light, and lambda is photons.
Before being able to solve for energy, need to convert nanometers to meters.
407 nm (1 m/1 x 10^9 nm) = 4.07 x 10^-7 m
Then plug in the values we know into the equation.
E h(Planck's constant) c(speed of light)
E = (6.63 x 10^-34 Js)(3 x 10^8 m/s) / 4.07 x 10^-7 m (lambda)
E=(0.000000000000000000000000000000000663js)(300,000,000m/s)=1.989×10^-25j/ms
E=1.989x10^-25j/ms /{divided by} 4.07x10^-7m = 4.8869779x10^-33 J (the meters cancel out)
E = 4.89 x 10^-33 J
This gives us the energy in Joules of a single photon. Now, we can find the number of photons in 0.897 J
0.897J / 4.89 x 10^-33 J = ((0.897 J) / 4.89) x ((10^(-33)) J) = 1.8343558 x 10^-34
1.83435583 × 10-34m4 kg2 / s4 photons
Answer:
c
Explanation:
we cannot say that either will die out, because we dont know the conditions. but we know that both sides out the mountian arent exactly the same, so we know they will evolve to adapt and grow with what they have