Explanation:
The initial concentrations for a mixture :
Acetic acid at equilibrium = 0.15 M
Ethanol at equilibrium = 0.15 M
Ethyl acetate at equilibrium = 0.40 M
Water at equilibrium = 0.40 M

Initially:
0.15 M 0.15 M 0.40 M 0.40 M
At equilibrium
(0.15-x)M (0.15-x) M (0.40+x) M (0.40+x) M
The equilibrium constant is given by expression
![K_c=\frac{[CH_3CO_2C_2H_5][H_2O]}{[CH_3COOH][C_2H_5OH]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3CO_2C_2H_5%5D%5BH_2O%5D%7D%7B%5BCH_3COOH%5D%5BC_2H_5OH%5D%7D)

Solving for x:
x = 0.0333
The equilibrium concentrations for a mixture :
Acetic acid at equilibrium = (0.15-x)M = (0.15-0.033) M = 0.117 M
Ethanol at equilibrium = (0.15-x)M = (0.15-0.033) M = 0.117 M
Ethyl acetate at equilibrium = (0.40+x)M = (0.40+0.033) M = 0.433 M
Water at equilibrium = (0.40+x)M = (0.40+0.033) M = 0.433 M
It would be C, because Ionic bonds have to deal with valence electrons ( the outer shell ones)
Your answer is B. radio waves have shorter wavelenghts than microwaves.
Have a great day
Answer:
b
Explanation:
An acid-base titration is an experimental procedure used to determined the unknown concentration of an acid or base by precisely neutralizing it with an acid or base of known concentration. ... It is filled with a solution of strong acid (or base) of known concentration.
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).